The fourfold way of the genetic code
- PMID: 19643160
- DOI: 10.1016/j.biosystems.2009.07.006
The fourfold way of the genetic code
Abstract
We describe a compact representation of the genetic code that factorizes the table in quartets. It represents a "least grammar" for the genetic language. It is justified by the Klein-4 group structure of RNA bases and codon doublets. The matrix of the outer product between the column-vector of bases and the corresponding row-vector V(T)=(C G U A), considered as signal vectors, has a block structure consisting of the four cosets of the KxK group of base transformations acting on doublet AA. This matrix, translated into weak/strong (W/S) and purine/pyrimidine (R/Y) nucleotide classes, leads to a code table with mixed and unmixed families in separate regions. A basic difference between them is the non-commuting (R/Y) doublets: AC/CA, GU/UG. We describe the degeneracy in the canonical code and the systematic changes in deviant codes in terms of the divisors of 24, employing modulo multiplication groups. We illustrate binary sub-codes characterizing mutations in the quartets. We introduce a decision-tree to predict the mode of tRNA recognition corresponding to each codon, and compare our result with related findings by Jestin and Soulé [Jestin, J.-L., Soulé, C., 2007. Symmetries by base substitutions in the genetic code predict 2' or 3' aminoacylation of tRNAs. J. Theor. Biol. 247, 391-394], and the rearrangements of the table by Delarue [Delarue, M., 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13, 161-169] and Rodin and Rodin [Rodin, S.N., Rodin, A.S., 2008. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100, 341-355], respectively.
Similar articles
-
On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases.Heredity (Edinb). 2008 Apr;100(4):341-55. doi: 10.1038/sj.hdy.6801086. Epub 2008 Mar 5. Heredity (Edinb). 2008. PMID: 18322459
-
tRNA genes and the genetic code.J Theor Biol. 2008 Aug 7;253(3):469-82. doi: 10.1016/j.jtbi.2008.03.006. Epub 2008 Mar 13. J Theor Biol. 2008. PMID: 18501928
-
Amino acid contribution to the genetic code structure: end-atom chemical rules of doublet composition.J Theor Biol. 1998 Aug 21;193(4):679-90. doi: 10.1006/jtbi.1998.0733. J Theor Biol. 1998. PMID: 9745760
-
tRNA's wobble decoding of the genome: 40 years of modification.J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15. J Mol Biol. 2007. PMID: 17187822 Review.
-
The genetic code-function and evolution.Cell Mol Biol Res. 1993;39(7):685-8. Cell Mol Biol Res. 1993. PMID: 8055001 Review.
Cited by
-
Self-Organisation of Prediction Models.Entropy (Basel). 2023 Nov 28;25(12):1596. doi: 10.3390/e25121596. Entropy (Basel). 2023. PMID: 38136476 Free PMC article. Review.
-
The Quantum Workings of the Rotating 64-Grid Genetic Code.Neuroquantology. 2011 Dec;9(4):728-746. doi: 10.14704/nq.2011.9.4.499. Neuroquantology. 2011. PMID: 22308074 Free PMC article.
-
On the organizational dynamics of the genetic code.Genomics Proteomics Bioinformatics. 2011 Apr;9(1-2):21-9. doi: 10.1016/S1672-0229(11)60004-1. Genomics Proteomics Bioinformatics. 2011. PMID: 21641559 Free PMC article.
-
An integrated, structure- and energy-based view of the genetic code.Nucleic Acids Res. 2016 Sep 30;44(17):8020-40. doi: 10.1093/nar/gkw608. Epub 2016 Jul 22. Nucleic Acids Res. 2016. PMID: 27448410 Free PMC article. Review.
-
The rules of variation: amino acid exchange according to the rotating circular genetic code.J Theor Biol. 2010 Jun 7;264(3):711-21. doi: 10.1016/j.jtbi.2010.03.046. Epub 2010 Apr 3. J Theor Biol. 2010. PMID: 20371250 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous