Spontaneous calcium release in tissue from the failing canine heart
- PMID: 19648256
- PMCID: PMC2770773
- DOI: 10.1152/ajpheart.01320.2008
Spontaneous calcium release in tissue from the failing canine heart
Abstract
Abnormalities in calcium handling have been implicated as a significant source of electrical instability in heart failure (HF). While these abnormalities have been investigated extensively in isolated myocytes, how they manifest at the tissue level and trigger arrhythmias is not clear. We hypothesize that in HF, triggered activity (TA) is due to spontaneous calcium release from the sarcoplasmic reticulum that occurs in an aggregate of myocardial cells (an SRC) and that peak SCR amplitude is what determines whether TA will occur. Calcium and voltage optical mapping was performed in ventricular wedge preparations from canines with and without tachycardia-induced HF. In HF, steady-state calcium transients have reduced amplitude [135 vs. 170 ratiometric units (RU), P < 0.05] and increased duration (252 vs. 229 s, P < 0.05) compared with those of normal. Under control conditions and during beta-adrenergic stimulation, TA was more frequent in HF (53% and 93%, respectively) compared with normal (0% and 55%, respectively, P < 0.025). The mechanism of arrhythmias was SCRs, leading to delayed afterdepolarization-mediated triggered beats. Interestingly, the rate of SCR rise was greater for events that triggered a beat (0.41 RU/ms) compared with those that did not (0.18 RU/ms, P < 0.001). In contrast, there was no difference in SCR amplitude between the two groups. In conclusion, TA in HF tissue is associated with abnormal calcium regulation and mediated by the spontaneous release of calcium from the sarcoplasmic reticulum in aggregates of myocardial cells (i.e., an SCR), but importantly, it is the rate of SCR rise rather than amplitude that was associated with TA.
Figures
Comment in
-
The failing ventricle: what initiates the complex ventricular arrhythmias?Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1198-9. doi: 10.1152/ajpheart.00725.2009. Epub 2009 Aug 7. Am J Physiol Heart Circ Physiol. 2009. PMID: 19666836 Free PMC article. No abstract available.
References
-
- Akar FG, Rosenbaum DS. Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res 93: 638–645, 2003 - PubMed
-
- Baartscheer A, Schumacher CA, Belterman CN, Coronel R, Fiolet JW. SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res 58: 99–108, 2003 - PubMed
-
- Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85: 1046–1055, 1992 - PubMed
-
- Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100: 391–398, 2007 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
