Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 14;15(36):9223-34.
doi: 10.1002/chem.200900776.

Enantioselective total synthesis of brevetoxin A: unified strategy for the B, E, G, and J subunits

Affiliations

Enantioselective total synthesis of brevetoxin A: unified strategy for the B, E, G, and J subunits

Michael T Crimmins et al. Chemistry. .

Abstract

Brevetoxin A is a decacyclic ladder toxin that possesses 5-, 6-, 7-, 8-, and 9-membered oxacycles, as well as 22 tetrahedral stereocenters. Herein, we describe a unified approach to the B, E, G, and J rings based upon a ring-closing metathesis strategy from the corresponding dienes. The enolate technologies developed in our laboratory allowed access to the precursor acyclic dienes for the B, E, and G medium-ring ethers. The strategies developed for the syntheses of these four monocycles ultimately provided multigram quantities of each of the rings, supporting our efforts toward the completion of a convergent synthesis of brevetoxin A.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Initial retrosynthetic analysis of the B ring 10.
Figure 2
Figure 2
Aldol-based retrosynthetic analysis of the B ring 27.
Figure 3
Figure 3
Key features of the strategy for the B ring 47.
Figure 4
Figure 4
Key strategic elements for the E ring synthesis.
Figure 5
Figure 5
Key features of the first generation synthesis of the G ring 82.
Figure 6
Figure 6
Key features of the second generation synthesis of the G ring.
Figure 7
Figure 7
Key features of the first generation synthesis of the J ring 106.
Figure 8
Figure 8
Key features of the second generation synthesis of the J ring 115.
Scheme 1
Scheme 1
Retrosynthetic analysis
Scheme 2
Scheme 2
First generation B ring synthesis. Reagents and conditions: a) (+)-DIPT, Ti(O-iPr)4, tBuOOH, CH2Cl2, 4 Å MS, −20 °C, 63%; b) NaH, BnBr, nBu4NI, THF, 91%; c) KCN, LiClO4, CH3CN, 80 °C, 84%; d) NaOH, H2O, MeOH, 65 °C; e) LiAlH4, Et2O, 35 °C, 78% for 2 steps; f) TIPSCl, imid., DMF, 89%; g) NaH, BrCH2CO2H, THF, 88%; h) PivCl, Et3N, (R)-5-lithio-4-isopropyl-oxazolidin-2-one, THF, 80%; i) NaN(SiMe3)2, E-ICH2CH=CHCH2OPMB (16), THF, PhMe, −78 to −45 °C, 80%; j) LiBH4, MeOH, Et2O, 0 °C, 96%; k) (COCl)2, DMSO, Et3N, CH2Cl2; l) (4-dIcr)2BCH2C(Me)=CH2, Et2O, THF, −78 °C, 94% for 2 steps; m) Ac2O, pyr., DMAP, CH2Cl2, 92%; n) DDQ, H2O, CH2Cl2, 0 °C, 85%; o) (+)-DET, Ti(O-iPr)4, tBuOOH, CH2Cl2, 4 Å MS, −20 °C, 93%; p) K2CO3, MeOH, Et2O, 89%; q) NaIO4, THF, H2O; r) NaBH4, EtOH, 0 °C, 92% for 2 steps; s) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, 70%.
Scheme 3
Scheme 3
Attempted incorporation of the C8 methyl. Reagents and conditions: a) LiBH4, MeOH, Et2O, 0 °C, 96%; b) (COCl)2, DMSO, Et3N, CH2Cl2; c) MeMgI, Et2O, 0 °C, 90%; d) (COCl)2, DMSO, Et3N, CH2Cl2; e) (4-dIcr)2BCH2C(Me)=CH2, Et2O, THF, −78 °C, 89% for 2 steps, 10:1 dr; f) DDQ, H2O, CH2Cl2, 0 °C, 85%; g) (+)-DET, Ti(O-iPr)4, tBuOOH, CH2Cl2, 4 Å MS, −20 °C, 93%; h) NaIO4, THF, H2O; i) NaBH4, EtOH, 0 °C, 92% for 2 steps; j) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, no reaction.
Scheme 4
Scheme 4
Second generation B ring synthesis. Reagents and conditions: a) TiCl4, iPr2NEt, CH2=C(Me)CH2CHO, CH2Cl2, −78 °C; b) LiBH4, MeOH, Et2O, 0 °C, 58% for 2 steps; c) cyclohexanone, PPTS, MgSO4, C6H6, 80 °C, 87%; d) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, 83%; e) Na, naphthalene, THF, 0 °C, 91%; f) TBSOTf, 2,6-lut., CH2Cl2, 90%; g) PPTS, EtOH, 78 °C, 72%; h) Ac2O, DMAP, CH2Cl2, 87%; i) nBu4NF, THF, 100%; j) cyclohexanone, PPTS, MgSO4, C6H6, 80 °C, 94%; k) Pd(OH)2/C, H2 (45 psi), EtOH, 90%, 1:1 dr.
Scheme 5
Scheme 5
First stereocontrolled completion of the B ring 46. Reagents and conditions: a) TiCl4, (−)-sparteine, CH2=C(Me)CH2CHO, CH2Cl2, −78 °C, 64%, 9:1 dr; b) LiBH4, MeOH, Et2O, 0 °C, 78%; c) TIPSCl, imid., DMF, 95%; d) PMBBr, NaH, DMF, 86%; e) Ti(O-iPr)4, nBuMgCl, Et2O, 0 °C, 86%; f) NaH, BrCH2CO2H, THF, DMF, 91%; g) PivCl, Et3N, (R)-5-lithio-4-isopropyl-oxazolidin-2-one, THF, 90%; h) NaN(SiMe3)2, (BnO)2CH2, TMSI, THF, −78 °C, 93%; i) LiBH4, MeOH, Et2O, 0 °C, 81%; j) (COCl)2, DMSO, Et3N, CH2Cl2; k) CH2=CHMgBr, THF, 0 °C, 76% for 2 steps, 3:1 dr; l) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, 75%; m) [PCy3] [COD] [pyr]Ir+PF6-, H2, CH2Cl2, −50 °C, 93%; n) Dess–Martin periodinane, CH2Cl2, 89%; o) MeMgCl, Et2O, −78 °C, 89%; p) LiDBB, THF, −78 °C, 98%; q) Dess–Martin periodinane, CH2Cl2, 88%; r) PPh3, p-NO2C6H4CO2H, DEAD, C6H6; iBu2AlH, CH2Cl2, −78 °C, 50% for 2 steps.
Scheme 6
Scheme 6
Homologated B ring synthesis. Reagents and conditions: a) NaN(SiMe3)2, CH2=C(Me)CH2I, THF, −78 °C, 78%; b) LDA, EtOAc, THF, −78 °C, 84%; c) LiAlH4, Et2O, 0 °C, 80%; d) TIPSCl, imid., CH2Cl2, 100%; e) (COCl)2, DMSO, Et3N, CH2Cl2, 100%; f) Zn(BH4)2, Et2O, −25 °C, 79%; g) NaH, BrCH2CO2H, THF, DMF, 90%; h) PivCl, Et3N, (R)-5-lithio-4-isopropyl-oxazolidin-2-one, THF, 90%; i) NaN(SiMe3)2, (BnO)2CH2, TMSI, THF, −78 °C, 83%; j) LiBH4, MeOH, Et2O, 0 °C, 86%; k) (COCl)2, DMSO, Et3N, CH2Cl2, 99%; l) CH2=CHMgBr, THF, 0 °C, 86% (3:1 dr); m) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, 71%; n) [PCy3] [COD] [pyr]Ir+PF6-, H2, CH2Cl2, −50 °C, 94%; o) (COCl)2, DMSO, Et3N, CH2Cl2, 95%; p) MeMgCl, Et2O, −78 °C, 88%; q) Raney Ni, H2, EtOH, 95%; r) Dess–Martin periodinane, CH2Cl2, 85%; s) (COCl)2, DMSO, Et3N, CH2Cl2, 64%; t) CeCl3•7H2O, NaBH4, MeOH, 82%.
Scheme 7
Scheme 7
Initial E ring synthesis. Reagents and conditions: a) NaN(SiMe3)2, CH2=CHCH2I, THF, −78 °C, 82%; b) NaBH4, H2O, THF, 95%; c) (COCl)2, DMSO, Et3N, CH2Cl2; d) Propionate 62, TiCl4, (−)-sparteine, NMP, CH2Cl2, 92% for 2 steps; e) LiBH4, MeOH, Et2O, 0 °C, 91%; f) TIPSCl, imid., DMF, 70 °C, 96%; g) NaH, BrCH2CO2H, THF, 81%; h) PivCl, Et3N, (R)-5-lithio-4-isopropyl-oxazolidin-2-one, THF, 77%; i) NaN(SiMe3)2, (Me)2C=CHCH2I, −78 °C, 83%; j) LiBH4, MeOH, Et2O, 0 °C, 87%; k) (COCl)2, DMSO, Et3N, CH2Cl2; l) (2-dIcr)2BCH2CH=CH2, Et2O, THF, −78 °C, 89% for 2 steps; m) Ac2O, Et3N, DMAP, CH2Cl2, 96%; n) m-CPBA, CH2Cl2, −20 °C, 97%; o) Cl2(PCy3)Ru=CHPh, CH2Cl2, 40 °C, 99%; p) HClO4, H2O, THF, 59%; q) NaIO4, nBu4NHSO4, THF, H2O, 92%; r) LiAlH4, Et2O, 0 °C, 96%; s) NaH, BnBr, DMF, THF, 40 °C, 75%; t) nBu4NF, THF, 96%.
Scheme 8
Scheme 8
Second generation E ring synthesis. Reagents and conditions: a) NaH, BrCH2CO2H, THF, 81%; b) PivCl, Et3N, (S)-5-lithio-4-benzyl-2-oxazolidinethione, THF, 66%; c) TiCl4, (−)-sparteine, CH2=CHCH2CHO, CH2Cl2, −78 °C, 50% (5:1 dr), 89% brsm; d) LiBH4, MeOH, Et2O, 0 °C, 80%; e) Na, naphthalene, THF, 0 °C, 98%; f) NaH, PMBBr, DMF; g) nBu4NF, THF, 90% for 2 steps.
Scheme 9
Scheme 9
Third generation E ring synthesis. Reagents and conditions: a) NaN(SiMe3)2, CH2=CHCH2I , THF, −78 °C, 76%; b) NaBH4, H2O, THF, 93%; c) (COCl)2, DMSO, Et3N, CH2Cl2; d) Propionate 62, TiCl4, (−)-sparteine, NMP, CH2Cl2; e) NaBH4, H2O, THF, 78% for 3 steps; f) TIPSCl, imid., CH2Cl2, 97%; g) NaH, BrCH2CO2H, THF, DMF, 92%; h) PivCl, Et3N, (R)-5-lithio-4-isopropyl-oxazolidin-2-one, THF, 89%; i) NaN(SiMe3)2, BrCH2CN, −78 °C; j) NaBH4, H2O, THF, 75% for 2 steps; k) (COCl)2, DMSO, Et3N, CH2Cl2; l) CH2=CHCH2SnBu3, AlMe3, CH2Cl2, −78 °C; m) HCl, MeOH, 65 °C, 69% for 3 steps; n) TBSCl, imid., DMF, 80 °C, 80%; o) LiAlH4, Et2O, −20 °C, 88%; p) NaH, BnBr, DMF, 98%; q) HF•pyr, THF, 72%.
Scheme 10
Scheme 10
First generation synthesis of the G ring 82. Reagents and conditions: a) CH2=CHCH2MgBr, Et2O, 35 °C, 80%; b) (−)-DCHT, Ti(iPrO)4, tBuOOH, 4Å mol. sieves, CH2Cl2, −20 °C, 43% (98% ee); c) BnBr, NaH, THF, 87%; d) Me2C=CHMgBr, CuI, THF, 86%; e) BrCH2CO2H, NaH, THF, 87%; f) PivCl, Et3N, THF; then (S)-5-lithio-4-benzyl-2-oxazolidinone (R1= Bn) or (S)-5-lithio-4-isopropyl-2-oxazolidinone (R1= iPr), −78 to 0 °C, 80% or 85% respectively; g) TiCl4, (−)-sparteine, acrolein, CH2Cl2, -78 to 0 °C, 25%; h) NaN(SiMe3)2, (BnO)2CH2, TMSI, THF, −78 to -45 °C, 70%; i) NaBH4, THF, H2O, 88%; j) Dess–Martin periodinane, CH2Cl2; k) CH2=CHMgBr, THF, −78 °C, 80% (2 steps); l) m-CPBA, CH2Cl2, −20 °C, 80%; m) Cl2(PCy3)(sIMes)Ru=CHPh, CH2Cl2, 40 °C, 85%.
Scheme 11
Scheme 11
Preparation of Diols 98. Reagents and conditions: a) NaN(SiMe3)2, CH2=CHCH2I, THF, -78 to -45 °C, 80%; b) LiBH4, MeOH, Et2O, 0 °C, 90%; c) (COCl)2, DMSO, Et3N, CH2Cl2, −78 to 0 °C, 97%; d) tBuO2CCH2Li, THF, −78 °C, 85% from 96, 75% from ent-75; e) LiAlH4, Et2O, 0 °C, 92% from 97, 67% from 99 brsm.
Scheme 12
Scheme 12
Second generation synthesis of the G ring 8. Reagents and conditions: a) TIPSCl, imid., CH2Cl2, 99%; b) (COCl)2, DMSO, DIEA, CH2Cl2, −78 to 0 °C, 94%; c) MeMgCl, Et2O, -78 °C, 97%; d) BrCH2CO2H, NaH, DMF, 30 h, 84% (after 1 recycle); e) PivCl, Et3N, THF; then (S)-5-lithio-4-isopropyl-2-oxazolidinone, -78 to 0 °C, 86%; f) NaN(SiMe3)2, (BnO)2CH2, TMSI, THF, −78 °C; g) LiBH4, MeOH, Et2O, 0 °C, 70% (2 steps); h) (COCl)2, DMSO, Et3N, CH2Cl2, −78 to 0 °C, 99%; i) CH2=CHMgBr, THF, 0 °C, 80%; j) Cl2(PCy3)(sIMes)Ru=CHPh, CH2Cl2, 40 °C, 85%; k) o-NO2C6H4SO2NHNH2, Et3N, DME, 85 °C, 95%; l) (COCl)2, DMSO, Et3N, CH2Cl2, −78 to 0 °C, 96%; m) iBu2AlH, CH2Cl2, −78 °C, 98%.
Scheme 13
Scheme 13
First Generation Synthesis of the J Ring 106. Reagents and conditions: a) TiCl4, DIEA, CH2Cl2, −78 °C; then trans-cinnamaldehyde or trans-2-hexenal, 76% (dr = 10:1) or 64% (dr = 7:1), respectively; b) NaBH4, H2O, THF, 80% (R = Ph), 82% (R = nPr); c) TIPSCl, imid., DMF, 92% (R = Ph), 73% (R = nPr); d) BrCH2CO2H, NaH, THF, 83% (R = Ph), 87% (R = nPr); e) PivCl, Et3N, THF; then (R)-5-lithio-4-isopropyl-2-oxazolidinone, −78 to 0 °C, 80% (R = Ph), 67% (R = nPr); f) NaN(SiMe3)2, CH2=CHCH2I, THF, −78 to −45 °C, 28% (R = Ph), 90% (R = nPr); g) NaBH4, H2O, THF, 86%; h) BnBr, NaH, THF, 99%; i) Cl2(PCy3)2Ru=CHPh, CH2Cl2, 40 °C, 95%; j) OsO4, NMO, THF, H2O, 78% (dr = 3:1).
Scheme 14
Scheme 14
Second generation synthesis of the J ring 115. a) TBDPSCl, imid., CH2Cl2, 0 °C to RT, 95%; b) Me3S+I-, BuLi, THF, 0 °C, 86%; c) (EtO)2CHCH2CH=CH2, PPTS, C6H6, 60 °C, 35 mm Hg, 87%; d) Cl2(PCy3)2Ru=CHPh, CH2Cl2, 40 °C, 95%; e) RuCl3, NaIO4, H2O, EtOAc, CH3CN, 75%; f) CDI, THF, 65 °C, 90%; g) CH2=CHCH2SiMe3, TMSOTf, CH3CN, −10 °C, 87% (dr >10:1); h) K2CO3, MeOH, 76%; i) PPTS, (MeO)2CMe2, 92%; j) 9-BBN, THF; NaOH, H2O2 (aq), 90%.

References

    1. Nicolaou KC, Frederick MO, Aversa RJ. Angew Chem Int Ed. 2008;47:7182. - PMC - PubMed
    2. Fuwa H, Sasaki M. Curr Opin Drug Discovery Dev. 2007;10:784. - PubMed
    3. Inoue M. Chem Rev. 2005;105:4379. - PubMed
    4. Nakata I. Chem Rev. 2005;105:4314. - PubMed
    5. Kadota I, Yamamoto Y. Acc Chem Res. 2005;38:423. - PubMed
    6. Sasaki M, Fuwa H. Synlett. 2004;11:1851.
    7. Evans PA, Delouvrié B. Curr Opin Drug Discovery Dev. 2002;5:986. - PubMed
    8. Marmsäter FP, West FG. Chem Eur J. 2002;8:4346. - PubMed
    9. Mori Y. Chem Eur J. 1997;3:849.
    10. Alvarez E, Candenas ML, Pérez R, Ravelo JL, Martín JD. Chem Rev. 1995;95:1953.
    1. Shimizu Y, Chou HN, Bando H, Vanduyne G, Clardy JC. J Am Chem Soc. 1986;108:514. - PubMed
    2. Shimizu Y, Chou HN, Bando H, Van Duyne G, Clardy JC. J Chem Soc, Chem Commun. 1986:1656. - PubMed
    3. Pawlak J, Tempesta MS, Golik J, Zagorski MG, Lee MS, Nakanishi K, Iwashita T, Gross ML, Tomer KB. J Am Chem Soc. 1987;109:1144.
    1. Michelliza S, Abraham WM, Jacocks HM, Schuster T, Baden DG. ChemBioChem. 2007;8:2233. - PMC - PubMed
    2. Naar JP, Flewelling LJ, Lenzi A, Abbott JP, Granholm A, Jacocks HM, Gannon D, Henry M, Pierce R, Baden DG, Wolny J, Landsberg JH. Toxicon. 2007;50:707. - PMC - PubMed
    3. Kirkpatrick B, Fleming LE, Backer LC, Bean JA, Tamer R, Kirkpatrick G, Kane T, Wanner A, Dalpra D, Reich A, Baden DG. Harmful Algae. 2006;5:526. - PMC - PubMed
    4. Fleming LE, Backer LC, Baden DG. Environ Health Persp. 2005;113:618. and references therein. - PMC - PubMed
    1. Nicolaou KC, Yang Z, Shi GQ, Gunzner JL, Agrios KA, Gärtner P. Nature. 1998;392:264. - PubMed
    2. Nicolaou KC, Bunnage ME, McGarry DG, Shi S, Somers PK, Wallace PA, Chu XJ, Agrios KA, Gunzner JL, Yang Z. Chem Eur J. 1999;5:599.
    3. Nicolaou KC, Wallace PA, Shi S, Ouellette MA, Bunnage ME, Gunzner JL, Agrios KA, Shi Gq, Gärtner P, Yang Z. Chem Eur J. 1999;5:618.
    4. Nicolaou KC, Shi Gq, Gunzner JL, Gärtner P, Wallace PA, Ouellette MA, Shi S, Bunnage ME, Agrios KA, Veale CA, Hwang CK, Hutchinson J, Prasad CVC, Ogilvie WW, Yang Z. Chem Eur J. 1999;5:628.
    5. Nicolaou KC, Gunzner JL, Shi Gq, Agrios KA, Gärtner P, Yang Z. Chem Eur J. 1999;5:646. - PubMed
    1. Horner L, Hoffmann H, Wippel HG, Klahre G. Chem Ber. 1959;92:2499.
    2. Buss AD, Warren S. J Chem Soc Perkin Trans 1. 1985:2307. and references therein.

Publication types

LinkOut - more resources