X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin
- PMID: 19651036
- PMCID: PMC2718144
- DOI: 10.1016/j.bpj.2009.05.017
X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin
Abstract
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
Figures








Similar articles
-
Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability.Biochim Biophys Acta. 2010 Apr;1798(4):801-28. doi: 10.1016/j.bbamem.2009.12.010. Epub 2009 Dec 22. Biochim Biophys Acta. 2010. PMID: 20026298 Free PMC article. Review.
-
Molecular weight dependence of the depletion attraction and its effects on the competitive adsorption of lung surfactant.Biochim Biophys Acta. 2008 Oct;1778(10):2032-40. doi: 10.1016/j.bbamem.2008.03.019. Epub 2008 Apr 3. Biochim Biophys Acta. 2008. PMID: 18433716 Free PMC article.
-
Visualizing the analogy between competitive adsorption and colloid stability to restore lung surfactant function.Biophys J. 2012 Feb 22;102(4):777-86. doi: 10.1016/j.bpj.2012.01.014. Epub 2012 Feb 21. Biophys J. 2012. PMID: 22385848 Free PMC article.
-
Enhanced surfactant adsorption via polymer depletion forces: a simple model for reversing surfactant inhibition in acute respiratory distress syndrome.Biophys J. 2007 Jan 1;92(1):3-9. doi: 10.1529/biophysj.106.091157. Epub 2006 Oct 13. Biophys J. 2007. PMID: 17040987 Free PMC article.
-
Characterisation of phase transition in adsorbed monolayers at the air/water interface.Adv Colloid Interface Sci. 2010 Feb 26;154(1-2):1-19. doi: 10.1016/j.cis.2010.01.003. Epub 2010 Jan 28. Adv Colloid Interface Sci. 2010. PMID: 20153454 Review.
Cited by
-
Lipid-protein interactions alter line tensions and domain size distributions in lung surfactant monolayers.Biophys J. 2012 Jan 4;102(1):56-65. doi: 10.1016/j.bpj.2011.11.4007. Epub 2012 Jan 3. Biophys J. 2012. PMID: 22225798 Free PMC article.
-
Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.Langmuir. 2009 Sep 1;25(17):10045-50. doi: 10.1021/la9009724. Langmuir. 2009. PMID: 19705897 Free PMC article.
-
Active interfacial shear microrheology of aging protein films.Phys Rev Lett. 2010 Jan 8;104(1):016001. doi: 10.1103/PhysRevLett.104.016001. Epub 2010 Jan 4. Phys Rev Lett. 2010. PMID: 20366371 Free PMC article.
-
Inflammation product effects on dilatational mechanics can trigger the Laplace instability and acute respiratory distress syndrome.Soft Matter. 2020 Jul 29;16(29):6890-6901. doi: 10.1039/d0sm00415d. Soft Matter. 2020. PMID: 32643749 Free PMC article.
-
Evolution of interfacial mechanics of lung surfactant mimics progression of acute respiratory distress syndrome.Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2309900120. doi: 10.1073/pnas.2309900120. Epub 2023 Dec 12. Proc Natl Acad Sci U S A. 2023. PMID: 38085774 Free PMC article.
References
-
- Marsh D. Lateral pressure in membranes. Biochim. Biophys. Acta. 1996;1286:183–223. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources