Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;29(11):1856-66.
doi: 10.1038/jcbfm.2009.107. Epub 2009 Aug 5.

Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging

Affiliations

Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging

Manus J Donahue et al. J Cereb Blood Flow Metab. 2009 Nov.

Abstract

The development of neuroimaging methods to characterize flow-metabolism coupling is crucial for understanding mechanisms that subserve oxygen delivery. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast reflects composite changes in cerebral blood volume (CBV), cerebral blood flow (CBF), and the cerebral metabolic rate of oxygen consumption (CMRO(2)). However, it is difficult to separate these parameters from the composite BOLD signal, thereby hampering MR-based flow-metabolism coupling studies. Here, a novel, noninvasive CBV-weighted MRI approach (VASO-FLAIR with 3D GRASE (GRadient-And-Spin-Echo)) is used in conjunction with CBF-weighted and BOLD fMRI in healthy volunteers (n=7) performing simultaneous visual (8 Hz flashing-checkerboard) and motor (1 Hz unilateral joystick) tasks. This approach allows for CBV, CBF, and CMRO(2) to be estimated, yielding (mean+/-s.d.): DeltaCBF=63%+/-12%, DeltaCBV=17%+/-7%, and DeltaCMRO(2)=13%+/-11% in the visual cortex, and DeltaCBF=46%+/-11%, DeltaCBV=8%+/-3%, and DeltaCMRO(2)=12%+/-13% in the motor cortex. Following the visual and motor tasks, the BOLD signal became more negative (P=0.003) and persisted longer (P=0.006) in the visual cortex compared with the motor cortex, whereas CBV and CBF returned to baseline earlier and equivalently. The proposed whole-brain technique should be useful for assessing regional discrepancies in hemodynamic reactivity without the use of intravascular contrast agents.

PubMed Disclaimer

Publication types

LinkOut - more resources