Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 2;131(34):12420-9.
doi: 10.1021/ja904788m.

Infochemistry: encoding information as optical pulses using droplets in a microfluidic device

Affiliations

Infochemistry: encoding information as optical pulses using droplets in a microfluidic device

Michinao Hashimoto et al. J Am Chem Soc. .

Abstract

This article describes a new procedure for generating and transmitting a message--a sequence of optical pulses--by aligning a mask (an opaque sheet containing transparent "windows") below a microfluidic channel in which flows an opaque continuous fluid containing transparent droplets. The optical mask encodes the message as a unique sequence of windows that can transmit or block light; the flow of transparent droplets in the channel converts this message into a sequence of optical pulses. The properties of the windows on the mask (e.g., their size, wavelength of transmittance, orientation of polarization) determine the information carried in these optical pulses (e.g., intensity, color, polarization). The structure of a transmitted signal depends on the number and spacing of droplets in the channel. Fourier transformation can deconvolve superimposed signals created by the flow of multiple droplets into the message that a single droplet would transmit. The research described in this contribution explores a new field at the intersection of chemistry, materials science, and information technology: infochemistry.

PubMed Disclaimer

Publication types

MeSH terms