Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces
- PMID: 19660908
- DOI: 10.1016/j.neunet.2009.07.020
Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces
Abstract
Several feature types have been used with EEG-based Brain-Computer Interfaces. Among the most popular are logarithmic band power estimates with more or less subject-specific optimization of the frequency bands. In this paper we introduce a feature called Time Domain Parameter that is defined by the generalization of the Hjorth parameters. Time Domain Parameters are studied under two different conditions. The first setting is defined when no data from a subject is available. In this condition our results show that Time Domain Parameters outperform all band power features tested with all spatial filters applied. The second setting is the transition from calibration (no feedback) to feedback, in which the frequency content of the signals can change for some subjects. We compare Time Domain Parameters with logarithmic band power in subject-specific bands and show that these features are advantageous in this situation as well.
Similar articles
-
Adaptive on-line classification for EEG-based brain computer interfaces with AAR parameters and band power estimates.Biomed Tech (Berl). 2005 Nov;50(11):350-4. doi: 10.1515/BMT.2005.049. Biomed Tech (Berl). 2005. PMID: 16370147 Clinical Trial.
-
Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.IEEE Trans Biomed Eng. 2007 Mar;54(3):550-6. doi: 10.1109/TBME.2006.888836. IEEE Trans Biomed Eng. 2007. PMID: 17355071
-
EEG-based motor imagery analysis using weighted wavelet transform features.J Neurosci Methods. 2009 Jan 30;176(2):310-8. doi: 10.1016/j.jneumeth.2008.09.014. Epub 2008 Sep 20. J Neurosci Methods. 2009. PMID: 18848844
-
A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.J Neural Eng. 2007 Jun;4(2):R32-57. doi: 10.1088/1741-2560/4/2/R03. Epub 2007 Mar 27. J Neural Eng. 2007. PMID: 17409474 Review.
-
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):135-8. doi: 10.1109/TNSRE.2006.875637. IEEE Trans Neural Syst Rehabil Eng. 2006. PMID: 16792278
Cited by
-
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation.Exp Neurol. 2022 May;351:113993. doi: 10.1016/j.expneurol.2022.113993. Epub 2022 Jan 29. Exp Neurol. 2022. PMID: 35104499 Free PMC article. Review.
-
Classification Scheme for Arm Motor Imagery.J Med Biol Eng. 2016;36:12-21. doi: 10.1007/s40846-016-0102-7. Epub 2016 Jan 29. J Med Biol Eng. 2016. PMID: 27069460 Free PMC article.
-
Multi-domain feature joint optimization based on multi-view learning for improving the EEG decoding.Front Hum Neurosci. 2023 Dec 7;17:1292428. doi: 10.3389/fnhum.2023.1292428. eCollection 2023. Front Hum Neurosci. 2023. PMID: 38130433 Free PMC article.
-
Can Presurgical Interhemispheric EEG Connectivity Predict Outcome in Hemispheric Surgery? A Brain Machine Learning Approach.Brain Sci. 2022 Dec 30;13(1):71. doi: 10.3390/brainsci13010071. Brain Sci. 2022. PMID: 36672052 Free PMC article.
-
Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification.J Med Signals Sens. 2021 Dec 28;12(1):40-47. doi: 10.4103/jmss.JMSS_74_20. eCollection 2022 Jan-Mar. J Med Signals Sens. 2021. PMID: 35265464 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources