Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2010 Jun;94(6):706-11.
doi: 10.1136/bjo.2008.149807. Epub 2009 Aug 5.

The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy

Affiliations
Multicenter Study

The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy

Alan D Fleming et al. Br J Ophthalmol. 2010 Jun.

Abstract

Background/aims: Automated grading has the potential to improve the efficiency of diabetic retinopathy screening services. While disease/no disease grading can be performed using only microaneurysm detection and image-quality assessment, automated recognition of other types of lesions may be advantageous. This study investigated whether inclusion of automated recognition of exudates and haemorrhages improves the detection of observable/referable diabetic retinopathy.

Methods: Images from 1253 patients with observable/referable retinopathy and 6333 patients with non-referable retinopathy were obtained from three grading centres. All images were reference-graded, and automated disease/no disease assessments were made based on microaneurysm detection and combined microaneurysm, exudate and haemorrhage detection.

Results: Introduction of algorithms for exudates and haemorrhages resulted in a statistically significant increase in the sensitivity for detection of observable/referable retinopathy from 94.9% (95% CI 93.5 to 96.0) to 96.6% (95.4 to 97.4) without affecting manual grading workload.

Conclusion: Automated detection of exudates and haemorrhages improved the detection of observable/referable retinopathy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources