Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;5(8):e1000591.
doi: 10.1371/journal.pgen.1000591. Epub 2009 Aug 7.

Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics

Affiliations

Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics

Hana Koutnikova et al. PLoS Genet. 2009 Aug.

Abstract

Hypertension is a major health problem of largely unknown genetic origins. To identify new genes responsible for hypertension, genetic analysis of recombinant inbred strains of mice followed by human association studies might prove powerful and was exploited in our current study. Using a set of 27 recombinant BXD strains of mice we identified a quantitative trait locus (QTL) for blood pressure (BP) on distal chromosome 9. The association analysis of markers encompassing the syntenic region on human chromosome 3 gave in an additive genetic model the strongest association for rs17030583 C/T and rs2291897 G/A, located within the UBP1 locus, with systolic and diastolic BP (rs17030583: 1.3+/-0.4 mmHg p<0.001, 0.8+/-0.3 mmHg p = 0.006, respectively and rs2291897: 1.5+/-0.4 mmHg p<0.001, 0.8+/-0.3 mmHg p = 0.003, respectively) in three separate studies. Our study, which underscores the marked complementarities of mouse and human genetic approaches, identifies the UBP1 locus as a critical blood pressure determinant. UBP1 plays a role in cholesterol and steroid metabolism via the transcriptional activation of CYP11A, the rate-limiting enzyme in pregnenolone and aldosterone biosynthesis. We suggest that UBP1 and its functional partners are components of a network controlling blood pressure.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Mapping of a systolic blood pressure (SBP) quantitative trait locus (QTL) in BXD strains.
(A) Rank ordered mean BP values across 27 male and 21 female BXD strains (with SEM error bars). (B) In males, a significant BP QTL is mapped on chromosome 9. In females, BP QTL maps to the same region on chromosome 9. (C) The genomic region corresponding to the BP QTL on chromosome 9. The LOD score is depicted in blue with the highest values at the position 113.2 to 113.9 Mb achieving LOD of 4.7. Individual genes under the BP QTL peak are indicated. (D) The syntenic chromosomal region in human.
Figure 2
Figure 2. Regional association plots of the genomic location indicated by the mouse model in the EUGENE2 human study population.
Associations of SNPs rs17030583 and rs2291897 (blue diamonds) to systolic and diastolic blood pressure are plotted with their P-values (as −log10 values) as a function of genomic position (with NCBI build 36). Estimated recombination rates (from Hapmap Phase 3) are plotted to reflect the local LD structure around the associated SNPs and their correlated proxies (red: r2≥0.8; orange: 0.5≤r2<0.8; gray: 0.2≤r2<0.5; white: r2<0.2). Diamonds represent directly genotyped markers and circles represent imputed markers.
Figure 3
Figure 3. Gene and LD block structure of the human chromosome 3. 33.2–33.9 Mb region.
Based on the imputed EUGENE2 data. Dark red color represents perfect LD (R2) of 1 between the markers.

Similar articles

Cited by

References

    1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:e21–181. - PubMed
    1. Lawes CM, Vander Hoorn S, Law MR, Elliott P, MacMahon S, et al. Blood pressure and the global burden of disease 2000. Part II: estimates of attributable burden. J Hypertens. 2006;24:423–430. - PubMed
    1. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–556. - PubMed
    1. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–399. - PubMed
    1. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–265. - PubMed

Publication types