Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jul 12;16(14):3177-81.
doi: 10.1021/bi00633a021.

Response of adrenal tumor cells to adrenocorticotropin: site of inhibition by cytochalasin B

Response of adrenal tumor cells to adrenocorticotropin: site of inhibition by cytochalasin B

J J Mrotek et al. Biochemistry. .

Abstract

The ability of cytochalasin B to inhibit the steroidogenic response of mouse adrenal tumor cells (Y-1) to adrenocorticotropin (ACTH) was examined with two aims: to consider the specificity of the inhibitor and to determine at what point(s) in the steroidogenic pathway it acts. Cytochalasin B did not inhibit protein synthesis or transport of [3H]-cholesterol into the cells nor did it alter total cell concentration of ATP. Together with previous evidence, this suggests that the effects of cytochalasin observed are relatively specific in these cells. Cytochalasin inhibits the increase in conversion of [3H]cholesterol to 20alpha-[3H]dihydroprogesterone (20alpha-hydroxypregn-4-en-3-one: a major product of the steroid pathway in Y-1 cells) produced by ACTH but does not inhibit conversion of cholesterol to pregnenolone by mitochondrial and purified enzyme preparations from Y-1 cells and bovine adrenal, respectively. Cytochalasin does not inhibit the conversion of pregnenolone to 20alpha-dihydroprogesterone but was shown to inhibit increased transport of [3H]cholesterol to mitochondria resulting from the action of ACTH. These findings indicate that cytochalasin acts after cholesterol has entered the cells and before it is subjected to side-chain cleavage in mitochondria. In view of the known action of cytochalasin on microfilaments, it is proposed that these organelles are necessary for the transport of cholesterol to the mitochondrial cleavage enzyme and that at least one effect of ACTH (and cyclic AMP) is exerted upon this transport process. The specificity of the effects of cytochalasin is considered in relation to this conclusion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources