Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;8(10):4743-52.
doi: 10.1021/pr900451u.

High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all

Affiliations

High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all

Thomas Köcher et al. J Proteome Res. 2009 Oct.

Abstract

The development of quantitative techniques in mass spectrometry has generated the ability to systematically monitor protein expression. Isobaric tags for relative and absolute quantification (iTRAQ) have become a widely used tool for the quantification of proteins. However, application of iTRAQ methodology using ion traps and hybrid mass spectrometers containing an ion trap such as the LTQ-Orbitrap was not possible until the development of pulsed Q dissociation (PQD) and higher energy C-trap dissociation (HCD). Both methods allow iTRAQ-based quantification on an LTQ-Orbitrap but are less suited for protein identification at a proteomic scale than the commonly used collisional induced dissociation (CID) fragmentation. We developed an analytical strategy combining the advantages of CID and HCD, allowing sensitive and accurate protein identification and quantitation at the same time. In a direct comparison, the novel method outperformed PQD and HCD regarding its limit of detection, the number of identified peptides and the analytical precision of quantitation. The new method was applied to study changes in protein expression in mouse hearts upon transverse aortic constriction, a model for cardiac stress.

PubMed Disclaimer

Publication types

LinkOut - more resources