Dimercaptosuccinic acid (succimer; DMSA) in inorganic lead poisoning
- PMID: 19663612
- DOI: 10.1080/15563650903174828
Dimercaptosuccinic acid (succimer; DMSA) in inorganic lead poisoning
Abstract
Introduction: This article reviews data on the efficacy of succimer (dimercaptosuccinic acid, DMSA) in the treatment of human inorganic lead poisoning, the adverse effects associated with its use, and summarizes current understanding of the pharmacokinetic and pharmacodynamic aspects.
Methods: Medline, Toxline, and Embase were searched and 912 papers were identified and considered. PHARMACOKINETICS AND PHARMACODYNAMICS: DMSA is absorbed rapidly but incompletely after oral administration, probably through an active transporter. There is evidence that enterohepatic circulation occurs. Most DMSA in plasma is protein (mainly albumin)-bound through a disulfide bond with cysteine; only a very small amount is present as free drug, which is filtered at the glomerulus then extensively reabsorbed into proximal tubule cells. Nonfiltered protein-bound DMSA in peritubular capillaries is also available for uptake into proximal tubule cells by active anion transport at the basolateral membrane. DMSA therefore accumulates in the kidney where it is extensively metabolized in humans to mixed disulfides of cysteine. Some 10-25% of an orally administered dose of DMSA is excreted in urine, the majority within 24 h and most (>90%) as DMSA-cysteine disulfide conjugates. It is not known whether protein-bound DMSA can chelate lead; there is evidence that the mixed disulfides of cysteine are the active chelating moiety in humans. If this is the case, this suggests that chelation occurs principally, if not exclusively, in the kidney. DOSE: DMSA 30 mg/kg/day is more effective than either 10 or 20 mg/kg/day in enhancing urine lead excretion. DURATION OF THERAPY: Initial clinical studies with DMSA involved the administration of a 5-day course of treatment. Subsequently, a 19- to 26-day regimen was introduced with the intent of preventing or at least blunting a rebound in the blood lead concentration. Studies suggest, however, that repeated courses of DMSA 30 mg/kg/day for at least 5 days are equally efficacious if a treatment-free period of at least 1 week between courses is included to allow redistribution of lead from bone to soft tissues and blood. There is also evidence that in more severely poisoned patients DMSA 30 mg/kg/day can be given for more than 5 days with benefit.
Efficacy: DMSA 30 mg/kg/day significantly increases urine lead elimination and significantly reduces blood lead concentrations in lead-poisoned patients, though there is substantial individual variation in response. Over a 5-day course, mean daily urine lead excretion exceeds baseline by between 5- and 20-fold and blood lead concentrations fall to 50% or less of the pretreatment concentration, with wide variation. Maximum enhancement of urine lead elimination typically occurs with the first dose. Most symptomatic patients report improvement after 2 days of treatment. However, DMSA did not improve cognition in children < 3 years old with mild lead poisoning, presumably because lead-induced neurological damage occurred during development in utero and/or early infancy. DMSA IN PREGNANCY AND IN THE NEONATE: DMSA is not teratogenic but did produce maternal toxicity (decreased weight gain) and fetotoxicity when given in high dose (100-1,000 mg/kg/day) in experimental studies. For this reason sodium calcium edetate is generally preferred in pregnancy.
Adverse effects: A transient modest rise in transaminase activity during chelation occurs in up to 60% of patients but has not resulted in clinically significant sequelae. Skin reactions occur in approximately 6% of treated patients and are occasionally severe. DMSA also increases urine copper and zinc excretion but not to a clinically important extent.
Conclusions: DMSA is an effective lead chelator that primarily chelates renal lead. It is generally well tolerated but may occasionally cause clinically important adverse effects. DMSA may now be considered as an alternative to sodium calcium edetate, particularly when an oral antidote is preferable.
Similar articles
-
A comparison of sodium calcium edetate (edetate calcium disodium) and succimer (DMSA) in the treatment of inorganic lead poisoning.Clin Toxicol (Phila). 2009 Nov;47(9):841-58. doi: 10.3109/15563650903321064. Clin Toxicol (Phila). 2009. PMID: 19852620 Review.
-
Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning.QJM. 2009 Oct;102(10):721-32. doi: 10.1093/qjmed/hcp114. Epub 2009 Aug 20. QJM. 2009. PMID: 19700440
-
Short-term efficacy of oral dimercaptosuccinic acid in children with low to moderate lead intoxication.Pediatrics. 1995 Oct;96(4 Pt 1):683-7. Pediatrics. 1995. PMID: 7567330
-
The current role of 2,3-dimercaptosuccinic acid (DMSA) in the management of childhood lead poisoning.Drug Saf. 1993 Aug;9(2):85-92. doi: 10.2165/00002018-199309020-00002. Drug Saf. 1993. PMID: 8397892 Review.
-
Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead.Clin Toxicol (Phila). 2017 Feb;55(2):133-141. doi: 10.1080/15563650.2016.1263855. Epub 2016 Dec 5. Clin Toxicol (Phila). 2017. PMID: 27919185
Cited by
-
A fatal case of JC virus meningitis presenting with hydrocephalus in a human immunodeficiency virus-seronegative patient.Ann Neurol. 2014 Jul;76(1):140-7. doi: 10.1002/ana.24192. Epub 2014 Jun 20. Ann Neurol. 2014. PMID: 24895208 Free PMC article.
-
Arsenic intoxication: general aspects and chelating agents.Arch Toxicol. 2020 Jun;94(6):1879-1897. doi: 10.1007/s00204-020-02739-w. Epub 2020 May 9. Arch Toxicol. 2020. PMID: 32388818 Free PMC article. Review.
-
Objective assessment of an ionic footbath (IonCleanse): testing its ability to remove potentially toxic elements from the body.J Environ Public Health. 2012;2012:258968. doi: 10.1155/2012/258968. Epub 2011 Nov 29. J Environ Public Health. 2012. PMID: 22174728 Free PMC article.
-
How Effective Are Secondary Interventions at Improving Health Outcomes In Children Exposed to Lead in Early Childhood?Rev Environ Econ Policy. 2024 Aug;18(2):261-278. doi: 10.1086/730899. Rev Environ Econ Policy. 2024. PMID: 39758815 Free PMC article.
-
Combined dimercaptosuccinic acid and zinc treatment in neurological Wilson's disease patients with penicillamine-induced allergy or early neurological deterioration.Biosci Rep. 2020 Aug 28;40(8):BSR20200654. doi: 10.1042/BSR20200654. Biosci Rep. 2020. PMID: 32809015 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials