Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors
- PMID: 19665859
- PMCID: PMC7126869
- DOI: 10.1016/j.jpba.2009.07.009
Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors
Abstract
In this work, the inhibitory activity of pyridine N-oxide derivatives against human severe acute respiratory syndrome (SARS) is predicted in terms of quantitative structure-activity relationship (QSAR) models. These models were developed with the aid of multivariate adaptive regression spline (MARS) and adaptive neuro-fuzzy inference system (ANFIS) combined with shuffling cross-validation technique. A shuffling MARS algorithm is utilized to select the most important variables in QSAR modeling and then these variables were used as inputs of ANFIS to predict SARS inhibitory activities of pyridine N-oxide derivatives. A data set of 119 drug-like compounds was coded with over hundred calculated meaningful molecular descriptors. The best descriptors describing the inhibition mechanism were solvation connectivity index, length to breadth ratio, relative negative charge, harmonic oscillator of aromatic index, average molecular weight and total path count. These parameters are among topological, electronic, geometric, constitutional and aromaticity descriptors. The statistical parameters of R2 and root mean square error (RMSE) are 0.884 and 0.359, respectively. The accuracy and robustness of shuffling MARS-ANFIS model in predicting inhibition behavior of pyridine N-oxide derivatives (pIC50) was illustrated using leave-one-out and leave-multiple-out cross-validation techniques and also by Y-randomization. Comparison of the results of the proposed model with those of GA-PLS-ANFIS shows that the shuffling MARS-ANFIS model is superior and can be considered as a tool for predicting the inhibitory behavior of SARS drug-like molecules.
Figures






Similar articles
-
Quantitative structure-activity relationship study of serotonin (5-HT7) receptor inhibitors using modified ant colony algorithm and adaptive neuro-fuzzy interference system (ANFIS).Eur J Med Chem. 2009 Apr;44(4):1463-70. doi: 10.1016/j.ejmech.2008.09.050. Epub 2008 Oct 14. Eur J Med Chem. 2009. PMID: 19013691
-
Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems.SAR QSAR Environ Res. 2012 Jul;23(5-6):505-20. doi: 10.1080/1062936X.2012.665811. Epub 2012 Mar 27. SAR QSAR Environ Res. 2012. PMID: 22452268
-
Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.Bioorg Med Chem. 2007 Jun 15;15(12):4265-82. doi: 10.1016/j.bmc.2007.03.065. Epub 2007 Mar 24. Bioorg Med Chem. 2007. PMID: 17434739
-
Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study.Curr Top Med Chem. 2018;18(13):1075-1090. doi: 10.2174/1568026618666180719164149. Curr Top Med Chem. 2018. PMID: 30027847 Review.
-
Determination of the best multivariate adaptive geographically weighted generalized Poisson regression splines model employing generalized cross-validation in dengue fever cases.MethodsX. 2023 Apr 7;10:102174. doi: 10.1016/j.mex.2023.102174. eCollection 2023. MethodsX. 2023. PMID: 37122365 Free PMC article. Review.
Cited by
-
Prediction of fresh herbage yield using data mining techniques with limited plant quality parameters.Sci Rep. 2024 Sep 13;14(1):21396. doi: 10.1038/s41598-024-72746-9. Sci Rep. 2024. PMID: 39271726 Free PMC article.
-
Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives.Int J Mol Sci. 2022 May 4;23(9):5132. doi: 10.3390/ijms23095132. Int J Mol Sci. 2022. PMID: 35563523 Free PMC article.
-
Deriving general structure-activity/selectivity relationship patterns for different subfamilies of cyclin-dependent kinase inhibitors using machine learning methods.Sci Rep. 2024 Jul 3;14(1):15315. doi: 10.1038/s41598-024-66173-z. Sci Rep. 2024. PMID: 38961127 Free PMC article.
-
Body fat percentage prediction using intelligent hybrid approaches.ScientificWorldJournal. 2014 Mar 2;2014:383910. doi: 10.1155/2014/383910. eCollection 2014. ScientificWorldJournal. 2014. PMID: 24723804 Free PMC article.
-
Prediction of insulin resistance using multiple adaptive regression spline in Chinese women.Endocr J. 2025 Apr 1;72(4):387-398. doi: 10.1507/endocrj.EJ24-0449. Epub 2025 Feb 1. Endocr J. 2025. PMID: 39894511 Free PMC article.
References
-
- Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M. J. Sung. N. Engl. J. Med. 2003;348:1986–1994. - PubMed
-
- Poutanen S.M., Low D.E., Henry B., Finkelstein S., Rose D., Green K., Tellier R., Brunham R.C., McGeer A.J. N. Engl. J. Med. 2003;348:1995–2005. - PubMed
-
- Bacha U., Barrila J., Velazquez-Campoy A., Leavitt S.A., Freire E. Bioche. 2004;43:4906–4912. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous