Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;3(3):111-9.
doi: 10.1016/0952-0600(90)90041-g.

The generation and metabolism of leukotrienes in the ionophore-stimulated blood of normal and asthmatic subjects

Affiliations

The generation and metabolism of leukotrienes in the ionophore-stimulated blood of normal and asthmatic subjects

A P Sampson et al. Pulm Pharmacol. 1990.

Abstract

The generation and metabolism of leukotrienes (LTs) B4, C4, D4, and E4 were studied in vitro in the A23187-stimulated whole blood of normal (N) and atopic asthmatic (AA) human subjects. Using a combination of reversed-phase high performance liquid chromatography and radioimmunoassay, we have demonstrated that the blood cells of atopic asthmatic patients have an enhanced ability to release LTB4 and LTC4 when compared to those of normal subjects. The release of LTB4 and LTC4 in response to ionophore is dose- and time-dependent. Half-maximal doses of ionophore caused the generation of high, sustained levels of LTB4, which are significantly higher in the AA blood than in N blood. Incubations of 3H-LTB4 in ionophore-stimulated N and AA blood revealed a slow metabolism to 20-OH-LTB4 and 20-COOH-LTB4. LTC4 is generated in smaller amounts than LTB4, with an early peak after 10 min which is significantly higher (p less than 0.01) in the AA blood compared to the N blood. Subsequent metabolism of LTC4 elicits significantly greater amounts of LTD4, and consistently higher levels of LTE4, in the AA blood. Parallel incubations of 3H-LTC4 in ionophore-stimulated N and AA blood demonstrated rapid metabolism of LTC4 by the glutathione detoxification pathway. The elevated production of LTB4 and LTC4 in AA blood was not accounted for by differences in leukocyte sub-type counts in the two groups, nor by differences in their rates of catabolism. The novel, selective 5-lipoxygenase inhibitor BW A4C [N-(3-phenoxycinnamyl) acetohydroxamic acid] caused dose-dependent inhibition of LTB4 and LTC4 generation and was equipotent in N and AA blood.

PubMed Disclaimer

Similar articles

Cited by

Publication types