Giant glial cell: new insight through mechanism-based modeling
- PMID: 19669488
- PMCID: PMC2585624
- DOI: 10.1007/s10867-008-9070-7
Giant glial cell: new insight through mechanism-based modeling
Abstract
The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of the glial cell activation: (1) via IP(3) production and Ca(2 +) release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca(2 +) channels. We suggest that the second pathway is the more significant for establishing the positive feedback in glutamate release that is critical for the self-sustained activity of the postsynaptic neuron. This mechanism differs from the mechanisms of the astrocyte-neuron signaling previously reported.
Figures




Similar articles
-
Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.Glia. 2002 May;38(3):215-27. doi: 10.1002/glia.10062. Glia. 2002. PMID: 11968059
-
Leech giant glial cell: functional role in a simple nervous system.Glia. 1999 Dec;28(3):175-82. Glia. 1999. PMID: 10559776 Review.
-
Photoinactivation of the giant neuropil glial cells in the leech Hirudo medicinalis: effects on neuronal activity and synaptic transmission.J Neurophysiol. 1996 Nov;76(5):2861-71. doi: 10.1152/jn.1996.76.5.2861. J Neurophysiol. 1996. PMID: 8930239
-
5-Hydroxytryptamine activates a barium-sensitive, cAMP-mediated potassium conductance in the leech giant glial cell.Glia. 2005 Feb;49(3):309-17. doi: 10.1002/glia.20120. Glia. 2005. PMID: 15494982
-
Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view.Adv Neurol. 1986;44:1045-73. Adv Neurol. 1986. PMID: 2871719 Review.
Cited by
-
Complexity in neurology and psychiatry.J Biol Phys. 2008 Aug;34(3-4):249-52. doi: 10.1007/s10867-008-9121-0. J Biol Phys. 2008. PMID: 19669473 Free PMC article. No abstract available.
-
Modeling of Astrocyte Networks: Toward Realistic Topology and Dynamics.Front Cell Neurosci. 2021 Mar 5;15:645068. doi: 10.3389/fncel.2021.645068. eCollection 2021. Front Cell Neurosci. 2021. PMID: 33746715 Free PMC article.
-
Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms.J Comput Neurosci. 2012 Feb;32(1):147-65. doi: 10.1007/s10827-011-0345-9. Epub 2011 Jun 11. J Comput Neurosci. 2012. PMID: 21667153
-
Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks.J Biol Phys. 2009 Oct;35(4):425-45. doi: 10.1007/s10867-009-9156-x. Epub 2009 Jun 4. J Biol Phys. 2009. PMID: 19669421 Free PMC article.
-
Astrocytic modulation on neuronal electric mode selection induced by magnetic field effect.Cogn Neurodyn. 2022 Feb;16(1):183-194. doi: 10.1007/s11571-021-09709-7. Epub 2021 Aug 18. Cogn Neurodyn. 2022. PMID: 35126777 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/35058528', 'is_inner': False, 'url': 'https://doi.org/10.1038/35058528'}, {'type': 'PubMed', 'value': '11256079', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11256079/'}]}
- Haydon, P.G.: Glia: listening and talking to the synapse. Nat. Rev. 2, 185–193 (2001) - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.298.5593.556', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.298.5593.556'}, {'type': 'PMC', 'value': 'PMC1226318', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1226318/'}, {'type': 'PubMed', 'value': '12386325', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12386325/'}]}
- Fields, R.D., Stevens-Graham, B.: New insights into neuron–glia communication. Science 298, 556–562 (2002) - PMC - PubMed
-
- None
- Bonvento, G., Giaume, C., Lorenceau, J.: Neuron–glia interactions: from physiology to behavior. J. Physiol. 96, 167–168 (2002)
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.8134839', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.8134839'}, {'type': 'PubMed', 'value': '8134839', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8134839/'}]}
- Nedergaard, M.: Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994) - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1098-1136(199906)26:4<280::AID-GLIA2>3.0.CO;2-W', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1098-1136(199906)26:4<280::aid-glia2>3.0.co;2-w'}, {'type': 'PubMed', 'value': '10383047', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10383047/'}]}
- Wiencken, A.E., Casagrande, V.A.: Endothelial nitric oxide synthase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26, 280–290 (1999) - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous