Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics
- PMID: 19669508
- PMCID: PMC2652548
- DOI: 10.1007/s10867-008-9107-y
Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics
Abstract
Three-component Förster resonance energy transfer (FRET) has been used to obtain efficient FRET between the cationic conjugated polymer (CCP) as donor and 5-carboxy tetramethylrhodamine (TAMRA) dye as acceptor, by using an intermediate donor, fluorescein. In spite of the fact that there is enough overlap between the emission spectra of CCP and absorption spectra of TAMRA, the efficiency of FRET between CCP and TAMRA is poor. The reason for this is that while the Förster critical distance is not very sensitive to the overlap, the FRET efficiency is extremely sensitive to it. However, it is observed that the FRET efficiency between CCP and TAMRA improves considerably when fluorescein is introduced in the solution. The triple FRET so obtained can be used for deoxyribonucleic acid sequence detection in medical diagnostics because the fluorescence emission from TAMRA is pH-insensitive.
Figures




Similar articles
-
Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates.Anal Chim Acta. 2006 May 24;568(1-2):181-9. doi: 10.1016/j.aca.2005.12.050. Epub 2006 Jan 30. Anal Chim Acta. 2006. PMID: 17761259
-
Two-Step Energy Transfer Dynamics in Conjugated Polymer and Dye-Labeled Aptamer-Based Potassium Ion Detection Assay.Polymers (Basel). 2019 Jul 19;11(7):1206. doi: 10.3390/polym11071206. Polymers (Basel). 2019. PMID: 31330963 Free PMC article.
-
Label-free detection of histone based on cationic conjugated polymer-mediated fluorescence resonance energy transfer.Talanta. 2018 Apr 1;180:150-155. doi: 10.1016/j.talanta.2017.12.007. Epub 2017 Dec 5. Talanta. 2018. PMID: 29332793
-
Extensive use of FRET in biological imaging.Microscopy (Oxf). 2013 Aug;62(4):419-28. doi: 10.1093/jmicro/dft037. Microscopy (Oxf). 2013. PMID: 23797967 Review.
-
Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.J Biotechnol. 2002 Jan;82(3):211-31. doi: 10.1016/s1389-0352(01)00039-3. J Biotechnol. 2002. PMID: 11999691 Review.
Cited by
-
In Vivo Analysis of Protein-Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects.Int J Mol Sci. 2016 Oct 11;17(10):1704. doi: 10.3390/ijms17101704. Int J Mol Sci. 2016. PMID: 27727181 Free PMC article. Review.
-
Theoretical Modeling of Viscosity Monitoring with Vibrating Resonance Energy Transfer for Point-of-Care and Environmental Monitoring Applications.Micromachines (Basel). 2018 Dec 21;10(1):3. doi: 10.3390/mi10010003. Micromachines (Basel). 2018. PMID: 30577634 Free PMC article.
-
FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth.Chemphyschem. 2011 Feb 25;12(3):462-74. doi: 10.1002/cphc.201000664. Epub 2010 Dec 29. Chemphyschem. 2011. PMID: 21344587 Free PMC article. Review.
-
Three-color spectral FRET microscopy localizes three interacting proteins in living cells.Biophys J. 2010 Aug 9;99(4):1274-83. doi: 10.1016/j.bpj.2010.06.004. Biophys J. 2010. PMID: 20713013 Free PMC article.
-
The concept of λ-ratiometry in fluorescence sensing and imaging.J Fluoresc. 2010 Sep;20(5):1099-128. doi: 10.1007/s10895-010-0644-y. Epub 2010 Apr 1. J Fluoresc. 2010. PMID: 20358283 Review.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.162375999', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.162375999'}, {'type': 'PMC', 'value': 'PMC123191', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC123191/'}, {'type': 'PubMed', 'value': '12167673', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12167673/'}]}
- Gaylord, B.S., Heeger, A.J., Bazan, G.C.: DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA 99(17), 10954–10957 (2002) - PMC - PubMed
-
- Bhatnagar, P.K., Mathur, P.C., Mathur, N., Aneja, A.: Low cost portable sensors for medical diagnostics using Förster resonance energy transfer between water soluble cationic conjugated polymers and PNAC* probes. Paper Presented at International Conference on Materials for Advanced Technologies (ICMAT), Singapore 1–6 July (2007)
-
- Behlke, M.A., Huang, L., Bogh, L., Rose, S., Devor, E.J.: Fluorescence and fluorescence applications. Integrated DNA Technologies. http://www.idtdna.com/support/technical/TechnicalBulletinPDF/fluorescenc... (2005)
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.85.23.8790', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.85.23.8790'}, {'type': 'PMC', 'value': 'PMC282592', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC282592/'}, {'type': 'PubMed', 'value': '3194390', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/3194390/'}]}
- Cardullo, R.A., Agrawal, S., Flores, C., Zamechnik, P.C., Wolf, D.E.: Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794 (1988) - PMC - PubMed
-
- Mocz, G.: Fluorescence resonance energy transfer (FRET) as a probe of proximity in proteins. http://dwb.unl.edu/Teacher/NSF/C08/C08Links/pps99.cryst.bbk.ac.uk/projec... (1999)
LinkOut - more resources
Full Text Sources
Other Literature Sources