Stochastic hierarchical systems: excitable dynamics
- PMID: 19669511
- PMCID: PMC2652551
- DOI: 10.1007/s10867-008-9112-1
Stochastic hierarchical systems: excitable dynamics
Abstract
We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive the mean field equations, and investigate bifurcations of steady states. Conditions of destabilization are found, which imply oscillations of the mean fields in the stochastic ensemble. The relation between the mean field equations and the paradigmatic Kuramoto model is shown.
Figures








Similar articles
-
Non-Markovian approach to globally coupled excitable systems.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011118. doi: 10.1103/PhysRevE.76.011118. Epub 2007 Jul 24. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17677421
-
Ensembles of excitable two-state units with delayed feedback.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 1):061124. doi: 10.1103/PhysRevE.82.061124. Epub 2010 Dec 14. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 21230661
-
Noise-controlled oscillations and their bifurcations in coupled phase oscillators.Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066206. doi: 10.1103/PhysRevE.68.066206. Epub 2003 Dec 23. Phys Rev E Stat Nonlin Soft Matter Phys. 2003. PMID: 14754296
-
Bifurcations in the Kuramoto model on graphs.Chaos. 2018 Jul;28(7):073109. doi: 10.1063/1.5039609. Chaos. 2018. PMID: 30070519
-
Stochastic thermodynamics, fluctuation theorems and molecular machines.Rep Prog Phys. 2012 Dec;75(12):126001. doi: 10.1088/0034-4885/75/12/126001. Epub 2012 Nov 20. Rep Prog Phys. 2012. PMID: 23168354 Review.
References
-
- None
- van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)
-
- None
- Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 2. Cambridge University Press, Cambridge (1988)
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF01023645', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf01023645'}]}
- Weissman, H., Weiss, G.H., Havlin, S.: Transport-properties of the continuous-time random-walk with a long-tailed waiting-time density. J. Stat. Phys. 57, 301–317 (1989)
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevB.38.373', 'is_inner': False, 'url': 'https://doi.org/10.1103/physrevb.38.373'}, {'type': 'PubMed', 'value': '9945201', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9945201/'}]}
- Fisher, D.S., Huse, D.A.: Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373–385 (1988) - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevLett.88.068302', 'is_inner': False, 'url': 'https://doi.org/10.1103/physrevlett.88.068302'}, {'type': 'PubMed', 'value': '11863861', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11863861/'}]}
- Sànchez, R., Newman, D.E., Carreras, B.A.: Waiting-time statistics of self-organized-criticality systems. Phys. Rev. Lett. 88, 068302 (2002) - PubMed
LinkOut - more resources
Full Text Sources