A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation
- PMID: 19680431
- PMCID: PMC2715216
- DOI: 10.1371/journal.pcbi.1000458
A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation
Abstract
Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self-assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered as their size increases.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures





































































Similar articles
-
Self-templated nucleation in peptide and protein aggregation.Phys Rev Lett. 2008 Dec 19;101(25):258101. doi: 10.1103/PhysRevLett.101.258101. Epub 2008 Dec 17. Phys Rev Lett. 2008. PMID: 19113754
-
Dissipative particle dynamics simulation on a ternary system with nanoparticles, double-hydrophilic block copolymers, and solvent.J Phys Chem B. 2008 Jun 5;112(22):6735-41. doi: 10.1021/jp710567f. Epub 2008 May 10. J Phys Chem B. 2008. PMID: 18471006
-
Effects of hydrophobic macromolecular crowders on amyloid β (16-22) aggregation.Biophys J. 2015 Jul 7;109(1):124-34. doi: 10.1016/j.bpj.2015.05.032. Biophys J. 2015. PMID: 26153709 Free PMC article.
-
Computational studies of protein regulation by post-translational phosphorylation.Curr Opin Struct Biol. 2009 Apr;19(2):156-63. doi: 10.1016/j.sbi.2009.02.007. Epub 2009 Apr 1. Curr Opin Struct Biol. 2009. PMID: 19339172 Review.
-
Ab initio discrete molecular dynamics approach to protein folding and aggregation.Methods Enzymol. 2006;412:314-38. doi: 10.1016/S0076-6879(06)12019-4. Methods Enzymol. 2006. PMID: 17046666 Review.
Cited by
-
Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.RSC Adv. 2015 Jan 1;5(127):105498. doi: 10.1039/C5RA20182A. Epub 2015 Dec 1. RSC Adv. 2015. PMID: 26989481 Free PMC article.
-
Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles.Int J Nanomedicine. 2020 Aug 6;15:5783-5802. doi: 10.2147/IJN.S254808. eCollection 2020. Int J Nanomedicine. 2020. PMID: 32821101 Free PMC article. Review.
-
NanoEHS beyond Toxicity - Focusing on Biocorona.Environ Sci Nano. 2017 Jul 1;7(4):1433-1454. doi: 10.1039/C6EN00579A. Epub 2017 Jun 1. Environ Sci Nano. 2017. PMID: 29123668 Free PMC article.
-
Camouflaged Fluorescent Silica Nanoparticles Target Aggregates and Condensates of the Amyloidogenic Protein Tau.Bioconjug Chem. 2022 Jul 20;33(7):1261-1268. doi: 10.1021/acs.bioconjchem.2c00168. Epub 2022 Jun 10. Bioconjug Chem. 2022. PMID: 35686491 Free PMC article.
-
Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer's amyloid-β(16-22) peptide.Biophys J. 2011 Nov 2;101(9):2267-76. doi: 10.1016/j.bpj.2011.09.046. Epub 2011 Nov 1. Biophys J. 2011. PMID: 22067167 Free PMC article.
References
-
- Fischer HC, Chan WCW. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotech. 2007;18:565–571. - PubMed
-
- Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3:40–47.
-
- Schulze C, Kroll A, Lehr CM, Schafer UF, Becker K, et al. Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology. 2008;2:51–61.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources