Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo
- PMID: 19682904
- DOI: 10.1016/j.cub.2009.07.050
Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo
Abstract
Cell size is one of the critical parameters controlling the size of intracellular structures. A well-known example is the constant nuclear-to-cytoplasmic ratio (N/C ratio) [1-5]. The length of the metaphase spindle is proportional to cell size, but it has an upper limit during early embryogenesis [6]. During anaphase, the mitotic spindle elongates and delivers the centrosomes and sister chromatids near the centers of the nascent daughter cells. Here, we quantified the relationship between spindle elongation and cell size in the early embryo of Caenorhabditis elegans and propose possible models for cell-size-dependent spindle elongation. Quantitative measurements revealed that the extent and speed of spindle elongation are correlated with cell size throughout early embryogenesis. RNAi knockdown of Galpha proteins and their regulators revealed that the spindles failed to fully elongate and that the speed of spindle elongation was almost constant regardless of cell size. Our results suggest that spindle elongation is controlled by two qualitatively distinct mechanisms, i.e., Galpha-dependent and -independent modes of elongation. Simulation analyses revealed that the constant-pulling model and the force-generator-limited model reproduced the dynamics of the Galpha-independent and Galpha-dependent mechanisms, respectively. These models also explain how the set length of spindles is achieved.
Comment in
-
Cellular allometry: the spindle in development and inheritance.Curr Biol. 2009 Sep 29;19(18):R846-7. doi: 10.1016/j.cub.2009.08.028. Curr Biol. 2009. PMID: 19788876
Similar articles
-
The distribution of active force generators controls mitotic spindle position.Science. 2003 Jul 25;301(5632):518-21. doi: 10.1126/science.1086560. Science. 2003. PMID: 12881570
-
Cellular allometry: the spindle in development and inheritance.Curr Biol. 2009 Sep 29;19(18):R846-7. doi: 10.1016/j.cub.2009.08.028. Curr Biol. 2009. PMID: 19788876
-
Evidence mounts for receptor-independent activation of heterotrimeric G proteins normally in vivo: positioning of the mitotic spindle in C. elegans.Sci STKE. 2003 Aug 19;2003(196):pe35. doi: 10.1126/stke.2003.196.pe35. Sci STKE. 2003. PMID: 12928525 Review.
-
Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos.Curr Biol. 2010 Feb 23;20(4):353-8. doi: 10.1016/j.cub.2009.12.050. Epub 2010 Feb 4. Curr Biol. 2010. PMID: 20137951
-
Asymmetric cell division in C. elegans: cortical polarity and spindle positioning.Annu Rev Cell Dev Biol. 2004;20:427-53. doi: 10.1146/annurev.cellbio.19.111301.113823. Annu Rev Cell Dev Biol. 2004. PMID: 15473847 Review.
Cited by
-
Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution.Elife. 2020 Sep 23;9:e55877. doi: 10.7554/eLife.55877. Elife. 2020. PMID: 32966209 Free PMC article.
-
Spatial and Temporal Scaling of Microtubules and Mitotic Spindles.Cells. 2022 Jan 12;11(2):248. doi: 10.3390/cells11020248. Cells. 2022. PMID: 35053364 Free PMC article. Review.
-
Size regulation of multiple organelles competing for a limiting subunit pool.PLoS Comput Biol. 2022 Jun 17;18(6):e1010253. doi: 10.1371/journal.pcbi.1010253. eCollection 2022 Jun. PLoS Comput Biol. 2022. PMID: 35714135 Free PMC article.
-
Using micromanipulation to analyze control of vertebrate meiotic spindle size.Cell Rep. 2013 Oct 17;5(1):44-50. doi: 10.1016/j.celrep.2013.09.021. Epub 2013 Oct 10. Cell Rep. 2013. PMID: 24120869 Free PMC article.
-
Impact of embryo size on apoptosis in C. elegans.MicroPubl Biol. 2025 May 19;2025:10.17912/micropub.biology.001608. doi: 10.17912/micropub.biology.001608. eCollection 2025. MicroPubl Biol. 2025. PMID: 40463483 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources