Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;8(19):1815-25.
doi: 10.4161/cbt.8.19.9435.

Suppressing the high-level expression and function of ATM in advanced-stage melanomas does not sensitize the cells to ionizing radiation

Affiliations
Free article

Suppressing the high-level expression and function of ATM in advanced-stage melanomas does not sensitize the cells to ionizing radiation

Stergios J Moschos et al. Cancer Biol Ther. 2009 Oct.
Free article

Abstract

Melanoma in its advanced stages is resistant not only to chemotherapy but also to radiation treatment. In line with efforts to identify genes that are key regulators of the disease and as such, may prove valuable targets for adjuvant and neo-adjuvant therapy of melanomas, we previously reported the presence of Serial Analysis of Gene Expression (SAGE) tags, corresponding to the Ataxia Telangiectasia Mutated (ATM) gene, in SAGE libraries generated from tissues representing primary and metastatic melanomas. In the present study, we document that ATM is expressed at high levels in advanced-stage melanomas. Given its crucial role in the cellular response to DNA double-strand breaks (DSB), ionizing radiation, and UV damage, we pursued a series of functional studies involving the targeting of ATM by way of RNA interference or an ATM-specific small-molecule inhibitor, followed by exposure of the cells to ionizing radiation or radiation combined with a DNA-intercalating drug, to test the hypothesis that the high-level expression of ATM prevents melanoma cells from undergoing apoptosis in response to DNA DSB-inducing treatments. However, unlike as demonstrated in the case of other malignancies, our findings summarized herein do not point to ATM as a pivotal DNA damage sensor for advanced-stage melanomas, raising the possibility that in these cells, genes other than ATM regulate and control the repair of DNA DSB.

PubMed Disclaimer

Publication types

MeSH terms