Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;130(2):240-6.
doi: 10.3109/00016480903143978.

Reactive oxygen species in human inner ear perilymph

Affiliations

Reactive oxygen species in human inner ear perilymph

Andrea Ciorba et al. Acta Otolaryngol. 2010 Feb.

Abstract

Conclusions: The results reported here provide the first evidence of the production of superoxide, a biologically relevant reactive oxygen species (ROS), in human inner ear perilymph (hIP) in pathological conditions, by the activity of the xanthine dehydrogenase/xanthine oxidase (XA/XO) enzyme system.

Objective: To investigate the presence of ROS in hIP.

Methods: Since damage and apoptosis of inner ear hair cells may occur as a result of ROS-mediated injury, we investigated the presence and production of ROS in 105 hIP samples; 98 collected from patients affected by profound sensorineural hearing loss, during surgery for cochlear implantation, and 7 controls, collected from patients affected by otosclerosis, in case of spontaneous leakage after stapedotomy. ROS production was investigated by spectrophotometric analysis and polyacrylamide gel electrophoresis (SDS-PAGE).

Results: In hIP samples tested by cytochrome c reduction kinetics, the average superoxide production was 27.34 mumoles per mg of total protein, against 0.36 in controls. Some of these hIP samples, analyzed by cytochrome c reduction kinetics in the presence of xanthine, were found to be positive for ROS-producing XA/XO enzyme. These results were supported by SDS-PAGE analysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources