Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;118(3):598-609.
doi: 10.1037/a0016201.

Brain activation in restrained and unrestrained eaters: an fMRI study

Affiliations

Brain activation in restrained and unrestrained eaters: an fMRI study

Maria Coletta et al. J Abnorm Psychol. 2009 Aug.

Abstract

Restraint theory has been used to model the process that produces binge eating. However, there is no satisfactory explanation for the tendency of restrained eaters (REs) to engage in counterregulatory eating, an ostensible analogue of binge eating. Using functional magnetic resonance imaging (fMRI), the authors investigated brain activation of normal weight REs (N = 9) and unrestrained eaters (UREs; N = 10) when fasted and fed and viewing pictures of highly and moderately palatable foods and neutral objects. When fasted and viewing highly palatable foods, UREs showed widespread bilateral activation in areas associated with hunger and motivation, whereas REs showed activation only in the cerebellum, an area previously implicated in low-level processing of appetitive stimuli. When fed and viewing high palatability foods, UREs showed activation in areas related to satiation and memory, whereas REs showed activation in areas implicated in desire, expectation of reward, and goal-defined behavior. These findings parallel those from behavioral research. The authors propose that the counterintuitive findings from preload studies and the present study are due to the fact that REs are less hungry than UREs when fasted and find palatable food more appealing than UREs when fed.

PubMed Disclaimer

MeSH terms