Computing with dendrodendritic synapses in the olfactory bulb
- PMID: 19686145
- DOI: 10.1111/j.1749-6632.2009.03899.x
Computing with dendrodendritic synapses in the olfactory bulb
Abstract
Decades of work in vivo and in vitro have provided a wealth of data on the properties of the reciprocal dendrodendritic synapses that connect olfactory bulb mitral and granule cells. However, hypotheses about the function of these connections have changed relatively little. These synapses are believed to mediate recurrent and lateral inhibition and thus, by analogy with lateral inhibition in other systems, have been proposed to play a role in sharpening mitral cell receptive fields and in generating oscillatory spiking in mitral cells. This description is likely to be partially accurate, but is likely to be a rather simplified and incomplete account of the function of these connections. In particular, current hypotheses about the function of dendrodendritic circuits do not account for some of the unusual features of reciprocal synapses that may allow olfactory bulb circuits to perform special functions. Here we review recent work on the physiology and function of olfactory bulb circuits and try to link the physiological properties of reciprocal synapses particular computations that the olfactory bulb may perform.
Similar articles
-
Plasticity of dendrodendritic microcircuits following mitral cell loss in the olfactory bulb of the murine mutant Purkinje cell degeneration.J Comp Neurol. 1987 Feb 8;256(2):284-98. doi: 10.1002/cne.902560208. J Comp Neurol. 1987. PMID: 3558882
-
Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.J Neurophysiol. 2003 Aug;90(2):644-54. doi: 10.1152/jn.00212.2003. Epub 2003 Apr 23. J Neurophysiol. 2003. PMID: 12711716
-
A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb.Proc Natl Acad Sci U S A. 2001 May 22;98(11):6441-6. doi: 10.1073/pnas.101126398. Epub 2001 May 15. Proc Natl Acad Sci U S A. 2001. PMID: 11353824 Free PMC article.
-
Dendritic processing within olfactory bulb circuits.Trends Neurosci. 2003 Sep;26(9):501-6. doi: 10.1016/S0166-2236(03)00228-5. Trends Neurosci. 2003. PMID: 12948662 Review.
-
Predicting brain organization with a computational model: 50-year perspective on lateral inhibition and oscillatory gating by dendrodendritic synapses.J Neurophysiol. 2020 Aug 1;124(2):375-387. doi: 10.1152/jn.00175.2020. Epub 2020 Jul 8. J Neurophysiol. 2020. PMID: 32639901 Free PMC article. Review.
Cited by
-
Development and Refinement of Functional Properties of Adult-Born Neurons.Neuron. 2017 Nov 15;96(4):883-896.e7. doi: 10.1016/j.neuron.2017.09.039. Epub 2017 Oct 19. Neuron. 2017. PMID: 29056299 Free PMC article.
-
Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors.Cell Tissue Res. 2021 Jan;383(1):495-506. doi: 10.1007/s00441-020-03402-7. Epub 2021 Jan 6. Cell Tissue Res. 2021. PMID: 33404844 Free PMC article.
-
Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.J Neurosci. 2013 Jan 23;33(4):1552-63. doi: 10.1523/JNEUROSCI.3410-12.2013. J Neurosci. 2013. PMID: 23345229 Free PMC article.
-
Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience.Neuron. 2012 Dec 6;76(5):962-75. doi: 10.1016/j.neuron.2012.09.037. Neuron. 2012. PMID: 23217744 Free PMC article.
-
Dendritic integration in olfactory bulb granule cells upon simultaneous multispine activation: Low thresholds for nonlocal spiking activity.PLoS Biol. 2020 Sep 23;18(9):e3000873. doi: 10.1371/journal.pbio.3000873. eCollection 2020 Sep. PLoS Biol. 2020. PMID: 32966273 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources