Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;17(2):244-56.
doi: 10.1016/j.devcel.2009.06.011.

Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation

Affiliations
Free article

Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation

Anton Khmelinskii et al. Dev Cell. 2009 Aug.
Free article

Abstract

The metaphase-to-anaphase transition is one of the most dramatic and highly regulated steps in cell division. At anaphase onset the protease separase dissolves sister chromatid cohesion. Simultaneously, the mitotic spindle elongates as interpolar microtubules (iMTs) slide apart at the spindle midzone, ensuring chromosome segregation. However, it remains unclear how spindle elongation is coordinated with cell cycle progression. Here we demonstrate that phosphorylation of the midzone organizer Ase1 controls localization and function of Cin8, a kinesin-5 that slides iMTs relative to each other. Phosphorylation of Ase1 by Cdk1 (cyclin-dependent kinase) inhibits Cin8 binding to iMTs, preventing bending and collapse of the metaphase spindle. In anaphase Ase1 dephosphorylation by the separase-activated phosphatase Cdc14 is necessary and sufficient for Cin8 recruitment to the midzone, where it drives spindle elongation. Our results reveal that sliding forces at the midzone are activated by separase and explain how spindle elongation is triggered with anaphase entry.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms