Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2009 Aug 19;4(8):e6682.
doi: 10.1371/journal.pone.0006682.

Chlorproguanil-dapsone-artesunate versus artemether-lumefantrine: a randomized, double-blind phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria

Affiliations
Clinical Trial

Chlorproguanil-dapsone-artesunate versus artemether-lumefantrine: a randomized, double-blind phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria

Zul Premji et al. PLoS One. .

Abstract

Background: Chlorproguanil-dapsone-artesunate (CDA) was developed as an affordable, simple, fixed-dose artemisinin-based combination therapy for use in Africa. This trial was a randomized parallel-group, double-blind, double-dummy study to compare CDA and artemether-lumefantrine (AL) efficacy in uncomplicated Plasmodium falciparum malaria and further define the CDA safety profile, particularly its hematological safety in glucose-6-phosphate dehydrogenase (G6PD) -deficient patients.

Methods and findings: The trial was conducted at medical centers at 11 sites in five African countries between June 2006 and August 2007. 1372 patients (> or =1 to <15 years old, median age 3 years) with acute uncomplicated P. falciparum malaria were randomized (2:1) to receive CDA 2/2.5/4 mg/kg once daily for three days (N = 914) or six-doses of AL over three days (N = 458). Non-inferiority of CDA versus AL for efficacy was evaluated in the Day 28 per-protocol (PP) population using parasitological cure (polymerase chain reaction [PCR]-corrected). Cure rates were 94.1% (703/747) for CDA and 97.4% (369/379) for AL (treatment difference -3.3%, 95%CI -5.6, -0.9). CDA was non-inferior to AL, but there was simultaneous superiority of AL (upper 95%CI limit <0). Adequate clinical and parasitological response at Day 28 (uncorrected for reinfection) was 79% (604/765) with CDA and 83% (315/381) with AL. In patients with a G6PD-deficient genotype (94/603 [16%] hemizygous males, 22/598 [4%] homozygous females), CDA had the propensity to cause severe and clinically concerning hemoglobin decreases: the mean hemoglobin nadir was 75 g/L (95%CI 71, 79) at Day 7 versus 97 g/L (95%CI 91, 102) for AL. There were three deaths, unrelated to study medication (two with CDA, one with AL).

Conclusions: Although parasitologically effective at Day 28, the hemolytic potential of CDA in G6PD-deficient patients makes it unsuitable for use in a public health setting in Africa.

Trial registration: ClinicalTrials.Gov NCT00344006.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors declare no conflict of interest other than P L Kirby, A Pamba and L Kellam who are employed by GlaxoSmithKline PLC and S Duparc who was employed by GlaxoSmithKline PLC at the time of the study and is now employed by the Medicines for Malaria Venture as stated in the affiliations.

Figures

Figure 1
Figure 1. Trial profile.
Figure 2
Figure 2. Mean hemoglobin (±95%CI) over time (a) for the ITT population and by G6PD genotype: (b) normal; (c) female heterozygous; (d) deficient (male hemizygous and female homozygous).
Day 0 are screening (baseline) values.
Figure 3
Figure 3. Relative frequency distribution for the maximum decrease in hemoglobin versus baseline at any time during the study, or minimum increase in hemoglobin versus baseline if hemoglobin values were greater than baseline throughout the study, by G6PD genotype: (a) normal; (b) female heterozygous; (c) deficient (male hemizygous and female homozygous).

References

    1. World Health Organisation. World Malaria Report. Geneva: World Health Organisation; 2005. Available online at: http://rbm.who.int/wmr2005/ (Last accessed 23rd August, 2008)
    1. Fegan GW, Noor AM, Akhwale WS, Cousens S, Snow RW. Effect of expanded insecticide-treated bednet coverage on child survival in rural Kenya: a longitudinal study. Lancet. 2007;370:1035–1039. - PMC - PubMed
    1. Bousema JT, Schneider P, Gouagna LC, Drakeley CJ, Tostmann A, et al. Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum. J Infect Dis. 2006;193:1151–1159. - PubMed
    1. Sutherland CJ, Ord R, Dunyo S, Jawara M, Drakeley CJ, et al. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether. PLoS Med. 2005;2:e92. - PMC - PubMed
    1. World Health Organisation. Guidelines for the treatment of malaria. Geneva: World Health Organisation; 2006. Available online at: http://malaria.who.int/docs/TreatmentGuidelines2006.pdf (Last accessed 22nd August, 2008)

Publication types

MeSH terms

Associated data