Application of key events analysis to chemical carcinogens and noncarcinogens
- PMID: 19690995
- PMCID: PMC2840875
- DOI: 10.1080/10408390903098673
Application of key events analysis to chemical carcinogens and noncarcinogens
Abstract
The existence of thresholds for toxicants is a matter of debate in chemical risk assessment and regulation. Current risk assessment methods are based on the assumption that, in the absence of sufficient data, carcinogenesis does not have a threshold, while noncarcinogenic endpoints are assumed to be thresholded. Advances in our fundamental understanding of the events that underlie toxicity are providing opportunities to address these assumptions about thresholds. A key events dose-response analytic framework was used to evaluate three aspects of toxicity. The first section illustrates how a fundamental understanding of the mode of action for the hepatic toxicity and the hepatocarcinogenicity of chloroform in rodents can replace the assumption of low-dose linearity. The second section describes how advances in our understanding of the molecular aspects of carcinogenesis allow us to consider the critical steps in genotoxic carcinogenesis in a key events framework. The third section deals with the case of endocrine disrupters, where the most significant question regarding thresholds is the possible additivity to an endogenous background of hormonal activity. Each of the examples suggests that current assumptions about thresholds can be refined. Understanding inter-individual variability in the events involved in toxicological effects may enable a true population threshold(s) to be identified.
Figures








Similar articles
-
Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique.Risk Anal. 2016 Mar;36(3):589-604. doi: 10.1111/risa.12460. Epub 2015 Aug 6. Risk Anal. 2016. PMID: 26249816
-
The influence of thresholds on the risk assessment of carcinogens in food.Mutat Res. 2009 Aug;678(2):113-7. doi: 10.1016/j.mrgentox.2009.05.002. Epub 2009 May 13. Mutat Res. 2009. PMID: 19442758
-
Human carcinogenic risk evaluation, part II: contributions of the EUROTOX specialty section for carcinogenesis.Toxicol Sci. 2004 Sep;81(1):3-6. doi: 10.1093/toxsci/kfh178. Epub 2004 May 24. Toxicol Sci. 2004. PMID: 15159528
-
Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment.Chem Biol Interact. 2019 Mar 1;301:112-127. doi: 10.1016/j.cbi.2019.01.025. Epub 2019 Feb 11. Chem Biol Interact. 2019. PMID: 30763550 Review.
-
Mode of action-based risk assessment of genotoxic carcinogens.Arch Toxicol. 2020 Jun;94(6):1787-1877. doi: 10.1007/s00204-020-02733-2. Epub 2020 Jun 15. Arch Toxicol. 2020. PMID: 32542409 Free PMC article. Review.
Cited by
-
The Key Events Dose-Response Framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds.Crit Rev Food Sci Nutr. 2009 Sep;49(8):682-9. doi: 10.1080/10408390903110692. Crit Rev Food Sci Nutr. 2009. PMID: 19690994 Free PMC article.
-
An Adverse Outcome Pathway Network for Chemically Induced Oxidative Stress Leading to (Non)genotoxic Carcinogenesis.Chem Res Toxicol. 2023 Jun 19;36(6):805-817. doi: 10.1021/acs.chemrestox.2c00396. Epub 2023 May 8. Chem Res Toxicol. 2023. PMID: 37156502 Free PMC article. Review.
-
Evaluation of functional candidate biomarkers of non-genotoxic hepatocarcinogenicity in human liver spheroid co-cultures.Arch Toxicol. 2023 Jun;97(6):1739-1751. doi: 10.1007/s00204-023-03486-4. Epub 2023 Mar 20. Arch Toxicol. 2023. PMID: 36941454
-
Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a.J Toxicol. 2011;2011:645361. doi: 10.1155/2011/645361. Epub 2011 Jun 22. J Toxicol. 2011. PMID: 21776264 Free PMC article.
-
Advancing human health risk assessment: integrating recent advisory committee recommendations.Crit Rev Toxicol. 2013 Jul;43(6):467-92. doi: 10.3109/10408444.2013.807223. Crit Rev Toxicol. 2013. PMID: 23844697 Free PMC article. Review.
References
-
- Amet Y., Berthou F., Fournier G., Dreano Y., Bardou L., Cledes J., Menez J-F. Cytochrome P450 4A and 2E1 expression in human kidney microsomes. Biochem Pharmacol. 1997;53:765–771. - PubMed
-
- Anand S. S., Soni M. G., Vaidya V. S., Murthy S. N., Mumtaz M. M., Mehendale H. M. Extent and timeliness of tissue repair determines the dose-related hepatotoxicity of chloroform. Int J Toxicol. 2003;22((1)):25–33. - PubMed
-
- Anand S. S., Philip B. K., Palkar P. S., Mumtaz M. M., Latendresse J. R., Mehendale H. M. Adaptive tolerance in mice upon subchronic exposure to chloroform: Increased exhalation and target tissue regeneration. Toxicol Appl Pharmacol. 2006;213((3)):267–281. - PubMed
-
- Ammann P., Laethem C. L., Kedderis G. L. Chloroform-induced cytolethality in freshly isolated male B6C3F1 mouse and F-344 rat hepatocytes. Toxicol Appl Pharmacol. 1998;149:217–225. - PubMed
-
- Baker J. R., Edwards R. J., Lasker J. M., Moore M. R., Satarug S. Renal and hepatic accumulation of cadmium and lead in the expression of CYP4F2 and CYP2E1. Toxicol Lett. 2005;159:182–191. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical