Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 18;74(18):7067-74.
doi: 10.1021/jo9013589.

Facile self-assembly of neutral dendritic metallocycles via oxygen-to-platinum coordination

Affiliations

Facile self-assembly of neutral dendritic metallocycles via oxygen-to-platinum coordination

Hai-Bo Yang et al. J Org Chem. .

Abstract

A new approach for the fabrication of neutral dendritic metallocycles is described. By combining rigid 120 degrees dicarboxylate donor linkers funtionalized with [G0]-[G3] Frechet-type dendrons and complementary rigid 60 degrees and 120 degrees di-Pt(II) acceptor subunits, neutral rhomboidal metallodendrimers and hexagonal metallodendrimers, respectively, were prepared under mild conditions in high yields. The assemblies have well-defined shapes and sizes and were characterized by multinuclear NMR ((1)H and (31)P), mass spectrometry (ESI (+)-TOF-MS and APPI(+)-TOF-MS), and elemental analysis. Isotopically resolved mass spectrometry data support the formation of the neutral [2 + 2] rhomboidal, and [3 + 3] hexagonal metallodendrimers, and NMR data are consistent with the formation of all ensembles. The structures of the [G0] and [G1] neutral rhomboidal metallodendrimers (3a and 3b) were unambiguously confirmed via single-crystal X-ray crystallography. The shape and size of [G3] neutral hexagonal metallodendrimer 5d was established with MMFF force-field simulations.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic and chemical structures of 120° dendritic dicarboxylate donor subunits 1.
FIGURE 2
FIGURE 2
The partial 1H NMR (top) and 31P{1H} NMR (bottom) spectra of [G3] neutral rhomboidal metallodendrimer 3d (See Figure 1 and Scheme 1 for the structures of building blocks 1a-d and 2).
FIGURE 3
FIGURE 3
Calculated (top) and experimental (bottom) ESI-MS spectra of [G0] rhomboidal metallodendrimer (A) and [G1] rhomboidal metallodendrimer (B).
FIGURE 4
FIGURE 4
Crystal structure of [G0] neutral rhomboidal metallodendrimer 3a. Hydrogen atoms have been removed for clarity.
FIGURE 5
FIGURE 5
Crystal structure of [G1] neutral rhomboidal metallodendrimer 3b. Hydrogen atoms have been removed for clarity.
FIGURE 6
FIGURE 6
The partial 1H NMR (top) and 31P{1H} NMR (bottom) spectra of [G3] neutral hexagonal metallodendrimer 5d (See Figure 1 and Scheme 2 for the structures of building blocks 1a-d and 4).
FIGURE 7
FIGURE 7
Calculated (top), experimental ESI(+)-TOF-MS (middle), and experimental APPI(+)-TOF-MS (bottom) spectra of [G0] neutral hexagonal metallodendrimer 5a (column A shows the [M + Na]+ peak and column B shows the [M + 2Na]2+ peak).
FIGURE 8
FIGURE 8
Simulated molecular model of [G3] neutral hexagonal metallodendrimer 5d (C = grey, O = red, P = purple, Pt = yellow; hydrogen atoms have been removed for clarity).
SCHEME 1
SCHEME 1
Self-Assembly of [G0]–[G3] 120° Angular Dendritic Linkers 1ad with 60° Di-platinum Acceptor 2 to Afford Neutral Rhomboidal Metallodendrimers 3ad
SCHEME 2
SCHEME 2
Self-Assembly of [G0]–[G3] 120° Angular Dendritic Linkers 1ad with 120° Di-platinum Acceptor 4 to Afford Neutral Hexagonal Metallodendrimers 5ad

References

    1. Lehn JM. Supramolecular Chemistry: concepts and perspectives. VCH; New York: 1995.
    2. Constable EC. Polymer Transition Metal Helicates. Vol. 9. Ibid; 1996. p. 213. Chapter 6.
    3. Chambron JC, Dietrich-Buchecker C, Sauvage JP. Transition Metals as Assembling and Templating Species. In: Lehn JM, Chair E, Atwood JL, Davis JED, MacNicol DD, Vogtle F, editors. Comprehensive Supramolecular Chemistry. Vol. 9. Pergamon Press; Oxford: 1996. p. 43. Chapter 2.
    4. Uller E, Demleitner I, Bernt I, Saalfrank RW. Synergistic Effect of Serendipity and Rational Design in Supramolecular Chemistry. In: Fujita M, editor. Structure and Bonding. Vol. 96. Springer; Berlin: 2000. p. 149.
    5. Leininger S, Olenyuk B, Stang PJ. Chem Rev. 2000;100:853–908. - PubMed
    6. Schwab PFH, Levin MD, Michl J. Chem Rev. 1999;99:1863. - PubMed
    1. Stang PJ, Olenyuk B. Acc Chem Res. 1997;30:502.
    2. Holliday BJ, Mirkin CA. Angew Chem, Int Ed. Vol. 40. 2001. p. 2022. - PubMed
    3. Seidel SR, Stang PJ. Acc Chem Res. 2002;35:972. - PubMed
    4. Fujita M, Umemoto K, Yoshizawa M, Fujita N, Kusukawa T, Biradha K. Chem Commun. 2001:509.
    5. Caulder DL, Raymond KN. Acc Chem Res. 1999;32:975.
    6. Gianneschi NC, Masar MS, III, Mirkin CA. Acc Chem Res. 2005;38:825. - PubMed
    7. Cotton FA, Lin C, Murillo CA. Acc Chem Res. 2001;34:759. - PubMed
    8. Fujita M, Tominaga M, Hori A, Therrien B. Acc Chem Res. 2005;38:369. - PubMed
    9. Fiedler D, Leung DH, Bergman RG, Raymond KN. Acc Chem Res. 2005;38:349. - PubMed
    10. Steel PJ. Acc Chem Res. 2005;38:243. - PubMed
    11. Zangrando E, Casanova M, Alessio E. Chem Rev. 2008;108:4979. - PubMed
    12. Oliveri CG, Ulmann PA, Wiester MJ, Mirkin CA. Acc Chem Res. 2008;41:1618. - PMC - PubMed
    13. Lee SJ, Hupp JT. Coord Chem Rev. 2006;250:1710.
    1. Goshe AJ, Steele IM, Ceccarelli C, Rheingold AL, Bosnich B. Proc Natl Acad Sci. 2002;99:4823. - PMC - PubMed
    1. Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K. Nature. 1995;378:469.
    2. Olenyuk B, Levin MD, Whiteford JA, Shield JE, Stang PJ. J Am Chem Soc. 1999;121:10434.
    3. Olenyuk B, Whiteford JA, Fechtenkotter A, Stang PJ. Nature. 1999;398:796. - PubMed
    4. Takeda N, Umemoto K, Yamaguchi K, Fujita M. Nature. 1999;398:794.
    5. Fujita M, Fujita N, Ogura K, Yamaguchi K. Nature. 1999;400:52.
    6. Lee SJ, Lin W. J Am Chem Soc. 2002;124:4554. - PubMed
    7. Kuehl CJ, Kryschenko YK, Radhakrishnan U, Seidel SR, Huang SD, Stang PJ. Proc Natl Acad Sci U S A. 2002;99:4932. - PMC - PubMed
    8. Huang XC, Zhang JP, Chen XM. J Am Chem Soc. 2004;126:13218. - PubMed
    9. Davis AV, Raymond KN. J Am Chem Soc. 2005;127:7912. - PubMed
    10. Hiraoka S, Sakata Y, Shionoya M. J Am Chem Soc. 2008;130:10058. - PubMed
    11. Hiraoka S, Harano K, Shiro M, Ozawa Y, Yasuda N, Toriumi K, Shionoya M. Angew Chem, Int Ed. 2006;45:6488. - PubMed
    12. Merlau ML, Del Pilar Mejia M, Nguyen ST, Hupp JT. Angew Chem, Int Ed. 2001;40:4239. - PubMed
    13. Sun SS, Stern CL, Nguyen ST, Hupp JT. J Am Chem Soc. 2004;126:6314. - PubMed
    14. Murase T, Sato S, Fujita M. Angew Chem, Int Ed. 2007;46:1083. - PubMed
    15. Kawano M, Kawamichi T, Haneda T, Kojima T, Fujita M. J Am Chem Soc. 2007;129:15418. - PubMed
    16. Ghosh S, Mukherjee PS. J Org Chem. 2006;71:8412. - PubMed
    1. Cotton FA, Daniels LM, Lin C, Murillo CA. J Am Chem Soc. 1999;121:4538.
    2. Cotton FA, Donahue JP, Murillo CA. J Am Chem Soc. 2003;125:5436. - PubMed

Publication types

MeSH terms