Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Apr;57(4):751-73.
doi: 10.1080/09553009014550911.

The skin: its structure and response to ionizing radiation

Affiliations
Review

The skin: its structure and response to ionizing radiation

J W Hopewell. Int J Radiat Biol. 1990 Apr.

Abstract

The response of the skin to ionizing radiation has important implications both for the treatment of malignant disease by radiation and for radiological protection. The structural organization of human skin is described and compared with that of the pig, with which it shows many similarities, in order that the response of the skin to ionizing radiation may be more fully understood. Acute radiation damage to the skin is primarily a consequence of changes in the epidermis; the timing of the peak of the reaction is related to the kinetic organization of this layer. The rate of development of damage is independent of the radiation dose, since this is related to the natural rate of loss of cells from the basal layer of the epidermis. Recovery of the epidermis occurs as a result of the proliferation of surviving clonogenic basal cells from within the irradiated area. The presence of clonogenic cells in the canal of the hair follicle is important, particularly after non-uniform irradiation from intermediate energy beta-emitters. The migration of viable cells from the edges of the irradiated site is also significant when small areas of skin are irradiated. Late damage to the skin is primarily a function of radiation effects on the vasculature; this produces a wave of dermal atrophy after 16-26 weeks. Dermal necrosis develops at this time after high doses. A second phase of dermal thinning is seen to develop after greater than 52 weeks, and this later phase of damage is associated with the appearance of telangiectasia. Highly localized irradiation of the skin, either to a specific layer (as may result from exposure to very low energy beta-emitters) or after exposure to small highly radioactive particles, 'hot particles', produces gross effects that become visibly manifest within 2 weeks of exposure. These changes result from the direct killing of the cells of the skin in interphase after doses greater than 100 Gy. Dose-effect curves have been established for the majority of these deterministic endpoints in the skin from the results of both experimental and clinical studies. These are of value in the establishment of safe radiation dose limits for the skin.

PubMed Disclaimer

LinkOut - more resources