Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov;89(3):288-313.
doi: 10.1016/j.pneurobio.2009.08.002. Epub 2009 Aug 21.

Axonal ion channels from bench to bedside: a translational neuroscience perspective

Affiliations
Review

Axonal ion channels from bench to bedside: a translational neuroscience perspective

Arun V Krishnan et al. Prog Neurobiol. 2009 Nov.

Abstract

Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources