Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells
- PMID: 1970571
Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells
Abstract
Studies were undertaken to identify the protein kinase(s) responsible for P-glycoprotein phosphorylation in multidrug-resistant (KB-V1) human carcinoma cells and to elucidate the functional role of phosphorylation. P-glycoprotein migrated on sodium dodecyl sulfate gels with apparent Mr 150,000 and is termed P150. When KB-V1 membrane vesicles were incubated with [gamma-32P] ATP, P150 was phosphorylated by an endogenous kinase that exhibited properties of membrane-inserted protein kinase C (PKC). Both membrane-bound P150 and purified P150 served as effective substrates for highly purified rat brain PKC which incorporated approximately 0.6 mol of phosphate/mol of P150. Enzyme assays showed that KB-V1 cells exhibit 4-fold higher PKC activity compared with the drug-sensitive KB-3 cell line. The basal phosphorylation of P150 observed in 32P-labeled cells was increased 2-fold by phorbol ester (PMA) treatment and reduced 30% by treatment with the isoquinolinsulfonamide H-7. Phosphopeptide maps of partially digested P150, phosphorylated either in vitro with PKC or in intact 32P-labeled control or PMA-stimulated cells, were indistinguishable from one another. Drug accumulation assays revealed that PMA treatment of KB-V1 cells significantly reduced [3H]vinblastine accumulation induced by verapamil or by tetrandrine. The results suggest that PKC is primarily responsible for P150 phosphorylation in KB-V1 cells and that phosphorylation may play a modulatory role in the drug transport process.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
