Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 2;131(34):12125-36.
doi: 10.1021/ja9015759.

Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory

Affiliations

Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory

Stosh A Kozimor et al. J Am Chem Soc. .

Abstract

We describe the use of Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT) to probe the electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C(5)Me(5))(2)MCl(2) (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. Pre-edge features in the Cl K-edge XAS data for the group IV transition-metals 1-3 provide direct evidence of covalent M-Cl orbital mixing. The amount of Cl 3p character was experimentally determined to be 25%, 23%, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a pre-edge shoulder for 4 (Th) and distinct and weak pre-edge features for U, 5. The amount of Cl 3p character was determined to be 9% for 5, and we were unable to make an experimental determination for 4. Using hybrid DFT calculations with relativistic effective core potentials, the electronic structures of 1-5 were calculated and used as a guide to interpret the experimental Cl K-edge XAS data. For transition-metal compounds 1-3, the pre-edge features arise due to transitions from Cl 1s electrons into the 3d-, 4d-, and 5d-orbitals, with assignments provided in the text. For Th, 4, we find that 5f- and 6d-orbitals are nearly degenerate and give rise to a single pre-edge shoulder in the XAS. For U, 5, we find the 5f- and 6d-orbitals fall into two distinct energy groupings, and Cl K-edge XAS data are interpreted in terms of Cl 1s transitions into both 5f- and 6d-orbitals. Time-dependent DFT was used to calculate the energies and intensities of Cl 1s transitions into empty metal-based orbitals containing Cl 3p character and provide simulated Cl K-edge XAS spectra for 1-4. For 5, which has two unpaired 5f electrons, simulated spectra were obtained from transition dipole calculations using ground-state Kohn-Sham orbitals. To the best of our knowledge, this represents the first application of Cl K-edge XAS to actinide systems. Overall, this study allows trends in orbital mixing within a well-characterized structural motif to be identified and compared between transition-metals and actinide elements. These results show that the orbital mixing for the d-block compounds slightly decreases in covalency with increasing principal quantum number, in the order Ti > Zr approximately = Hf, and that uranium displays approximately half the covalent orbital mixing of transition elements.

PubMed Disclaimer

LinkOut - more resources