Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;86(6):1365-75.
doi: 10.1189/jlb.0609387. Epub 2009 Aug 25.

Nitric Oxide positively regulates Ag (I)-induced Ca(2+) influx and mast cell activation: role of a Nitric Oxide Synthase-independent pathway

Affiliations

Nitric Oxide positively regulates Ag (I)-induced Ca(2+) influx and mast cell activation: role of a Nitric Oxide Synthase-independent pathway

Toshio Inoue et al. J Leukoc Biol. 2009 Dec.

Abstract

NO is generated by NOS activity and known to act as a negative regulator of mast cell activation. We reported previously that Ag (I) directly evokes mast cell degranulation and LTC(4) release via Ca(2+) influx through thiol-sensitive, store-independent channels. Here, we report that NO generated independently of NOS activity mediates the store-independent Ca(2+) influx. Exposure of mast cells to Ag (I) resulted in increased intracellular NO levels and NO(2)(-)/NO(3)(-) contents in the extracellular fluid. The NO increase was blocked by NO scavenger Hb and DTT but not by NOS inhibitors such as amino-BH(4) and L-NAME. This NO production occurred independently of the Src family kinase and PI3K activities, both of which were necessary for antigen-induced, NOS-dependent NO production. Hb and DTT reduced Ag (I)-induced beta-hexosaminidase release and LTC(4) release, whereas the NO scavengers and NOS inhibitors augmented antigen-induced mediator release. Moreover, Hb and DTT, but not the NOS inhibitors, abolished the Ag (I)-induced Ca(2+) influx, and none of the drugs blocked CRAC channel activity. Finally, Ag (I)-induced Ca(2+) influx was distinct from LTCC activity in terms of its sensitivities to wortmannin and LTCC antagonists and the effects of Ca(v)1.2 LTCC gene silencing. These data show that NOS-independent NO regulates mast cell activation positively via a unique store-independent Ca(2+) influx pathway. The present findings suggest multiple sources and functions of NO in mast cell biology.

PubMed Disclaimer

Publication types

MeSH terms