Harnessing chaos in recurrent neural networks
- PMID: 19709625
- PMCID: PMC5466426
- DOI: 10.1016/j.neuron.2009.08.003
Harnessing chaos in recurrent neural networks
Abstract
In this issue of Neuron, Sussillo and Abbott describe a new learning rule that helps harness the computational power of recurrent neural networks.
Figures
Comment on
-
Generating coherent patterns of activity from chaotic neural networks.Neuron. 2009 Aug 27;63(4):544-57. doi: 10.1016/j.neuron.2009.07.018. Neuron. 2009. PMID: 19709635 Free PMC article.
References
-
- Buonomano DV. A learning rule for the emergence of stable dynamics and timing in recurrent networks. J Neurophysiol. 2005;94:2275–2283. - PubMed
-
- Buonomano DV, Maass W. State-dependent Computations: Spatiotemporal Processing in Cortical Networks. Nat Rev Neurosci. 2009;10:113–125. - PubMed
-
- Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron. 2004;44:23–30. - PubMed
-
- Haykin S. Adaptive Filter Theory. Upper Saddle River: Prentice Hall; 2002.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
