Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2009 Aug 27;63(4):533-43.
doi: 10.1016/j.neuron.2009.07.014.

Activation of the opioidergic descending pain control system underlies placebo analgesia

Affiliations
Free article
Randomized Controlled Trial

Activation of the opioidergic descending pain control system underlies placebo analgesia

Falk Eippert et al. Neuron. .
Free article

Abstract

Placebo analgesia involves the endogenous opioid system, as administration of the opioid antagonist naloxone decreases placebo analgesia. To investigate the opioidergic mechanisms that underlie placebo analgesia, we combined naloxone administration with functional magnetic resonance imaging. Naloxone reduced both behavioral and neural placebo effects as well as placebo-induced responses in pain-modulatory cortical structures, such as the rostral anterior cingulate cortex (rACC). In a brainstem-specific analysis, we observed a similar naloxone modulation of placebo-induced responses in key structures of the descending pain control system, including the hypothalamus, the periaqueductal gray (PAG), and the rostral ventromedial medulla (RVM). Most importantly, naloxone abolished placebo-induced coupling between rACC and PAG, which predicted both neural and behavioral placebo effects as well as activation of the RVM. These findings show that opioidergic signaling in pain-modulating areas and the projections to downstream effectors of the descending pain control system are crucially important for placebo analgesia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources