Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;297(5):C1157-67.
doi: 10.1152/ajpcell.00219.2009. Epub 2009 Aug 26.

The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization

Affiliations
Free article

The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization

Abdel A Alli et al. Am J Physiol Cell Physiol. 2009 Nov.
Free article

Abstract

Arachidonic acid (AA) liberated from membrane phospholipids is known to activate phospholipase C gamma1 (PLCgamma1) concurrently with AHNAK in nonneuronal cells. The recruitment of AHNAK from the nucleus is required for it to activate PLCgamma1 at the plasma membrane. Here, we identify the C-type natriuretic peptide receptor (NPR-C), an atypical G protein-coupled receptor, as a protein binding partner for AHNAK1 in various cell types. Mass spectrometry and MASCOT analysis of excised bands from NPR-C immunoprecipitation studies revealed multiple signature peptides corresponding to AHNAK1. Glutathione S-transferase (GST) pulldown assays using GST- AHNAK1 fusion proteins corresponding to each of the distinct domains of AHNAK1 showed the C1 domain of AHNAK1 associates with NPR-C. The role of NPR-C in mediating AA-dependent AHNAK1 calcium signaling was explored in various cell types, including 3T3-L1 preadipocytes during the early stages of differentiation. Sucrose density gradient centrifugation studies showed AHNAK1 resides in the nucleus, cytoplasm, and at the plasma membrane, but small interfering RNA (siRNA)-mediated knockdown of NPR-C resulted in AHNAK1 accumulation in the nucleus. Overexpression of a portion of AHNAK1 resulted in augmentation of intracellular calcium mobilization, whereas siRNA-mediated knockdown of NPR-C or AHNAK1 protein resulted in attenuation of intracellular calcium mobilization in response to phorbol 12-myristate 13-acetate. We characterize the novel association between AHNAK1 and NPR-C and provide evidence that this association potentiates the AA-induced mobilization of intracellular calcium. We address the role of intracellular calcium in the various cell types that AHNAK1 and NPR-C were found to associate.

PubMed Disclaimer

Publication types

LinkOut - more resources