Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;23(19):3031-9.
doi: 10.1002/rcm.4218.

Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids

Affiliations

Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids

Rosalind Wolstenholme et al. Rapid Commun Mass Spectrom. 2009 Oct.

Abstract

Identification of suspects via fingermark analysis is one of the mainstays of forensic science. The success in matching fingermarks, using conventional fingermark scanning and database searching, strongly relies on the enhancement method adopted for fingermark recovery; this in turn depends on the components present in the fingermarks, which will change over time. This work aims to develop a robust methodology for improved analytical detection of the fingermark components. For the first time, matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been used to image endogenous lipids from fresh and aged, groomed and ungroomed fingermarks. The methodology was initially developed using oleic acid which was detected along with its degradation products over a 7-day period, at three different temperatures in a time-course experiment. The optimised methodology was then transferred to the imaging analysis of real fingermark samples. Fingermark patterns were reconstructed by retrieving the m/z values of oleic acid and its degradation products. This allowed the three aged fingermarks to be distinguished. In order to prove that MALDI-MSI can be used in a non-destructive way, a simple washing protocol was adopted which returned a fingermark that could be further investigated with classical forensic approaches. The work reported here proves the potential and the feasibility of MALDI-MSI for the forensic analysis of fingermarks, thus making it competitive with other MSI techniques such as desorption electrospray ionisation (DESI)-MS. The feasibility of using MALDI-MSI in fingermark ageing studies is also demonstrated along with the potential to be integrated into routine fingermark forensic analysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources