Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;58(5):377-82.
doi: 10.1007/BF02890095.

Morphological changes in cerebral vascular smooth muscle cells in stroke-prone spontaneously hypertensive rats (SHRSP). A scanning and transmission electron microscopic study

Affiliations

Morphological changes in cerebral vascular smooth muscle cells in stroke-prone spontaneously hypertensive rats (SHRSP). A scanning and transmission electron microscopic study

T Fujiwara et al. Virchows Arch B Cell Pathol Incl Mol Pathol. 1990.

Abstract

The ultrastructure of the vascular smooth muscle cells of the middle cerebral artery in 6-month-old male stroke-prone spontaneously hypertensive rats (SHRSP) was studied by scanning (SEM) and transmission electron microscopy (TEM) and compared with that of age-matched normotensive Wistar Kyoto rats (WKY). Although the smooth muscle cells of WKY rats by SEM had a typical spindle shape and smooth surface texture, those of SHRSP were structurally modified by numerous surface invaginations and projections, bearing some structural resemblance to the myotendinous junction of skeletal muscle. Structural modifications affected more than half the surface of medial smooth muscle cells in SHRSP, but less than 0.6% of the surface of these cells in WKY rats. About 10% of medial smooth muscle cells were necrotic in SHRSP, but no necrotic cells were identified in WKY rats. By TEM, smooth muscle cells in SHRSP were shown to be irregular in profile with deep indentations of the plasma membrane and were surrounded by many layers of basal lamina-like material. The present study suggests that most smooth muscle cells in the middle cerebral artery of SHRSP may be modified to adapt to chronic hypertension by increasing the junctional area between muscle cells and connective tissue and that some cells may undergo necrosis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources