Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr;260(1):147-59.
doi: 10.1007/BF00297500.

Differentiation of embryonic chick sympathetic neurons in vivo: ultrastructure, and quantitative determinations of catecholamines and somatostatin

Affiliations

Differentiation of embryonic chick sympathetic neurons in vivo: ultrastructure, and quantitative determinations of catecholamines and somatostatin

S Ross et al. Cell Tissue Res. 1990 Apr.

Abstract

The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through -18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurosci. 1985 Aug;5(8):2143-60 - PubMed
    1. Dev Biol. 1985 Mar;108(1):49-55 - PubMed
    1. Dev Biol. 1989 Dec;136(2):481-90 - PubMed
    1. J Morphol. 1951 Jan;88(1):49-92 - PubMed
    1. Z Zellforsch Mikrosk Anat. 1973 Dec 6;145(3):417-42 - PubMed

Publication types