Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 1;50(3):195-202.
doi: 10.1016/j.femsec.2004.06.013.

Methanotrophic bacteria in boreal forest soil after fire

Affiliations
Free article

Methanotrophic bacteria in boreal forest soil after fire

Krista Jaatinen et al. FEMS Microbiol Ecol. .
Free article

Abstract

Methane-oxidizing bacteria are the only terrestrial sink for atmospheric methane. Little is known, however, about the methane-oxidizing bacteria that are responsible for the consumption of atmospheric methane, or about the factors that influence their activity and diversity in soil. Effects of fire and its end-product, wood ash, on the activity and community of methane oxidizing bacteria were studied in boreal forest 3 months and 12 years after the treatments. Fire significantly increased the atmospheric CH(4) oxidation rate. Both fire and wood ash treatments resulted in increased soil pH, but there was no correlation with methane oxidation rates. Changes in the methane-oxidizing bacterial community due to treatments were not detected by cultivation-independent recovery and comparative sequence analysis of pmoA gene products from soil. Phylogenetic analysis showed that a majority of the pmoA sequences obtained belonged to the "upland soil cluster alpha", which has previously been detected in diverse forest environments.

PubMed Disclaimer

Publication types