Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009;13(4):R140.
doi: 10.1186/cc8021. Epub 2009 Aug 27.

Glucose absorption and gastric emptying in critical illness

Affiliations
Comparative Study

Glucose absorption and gastric emptying in critical illness

Marianne J Chapman et al. Crit Care. 2009.

Abstract

Introduction: Delayed gastric emptying occurs frequently in critically ill patients and has the potential to adversely affect both the rate, and extent, of nutrient absorption. However, there is limited information about nutrient absorption in the critically ill, and the relationship between gastric emptying (GE) and absorption has hitherto not been evaluated. The aim of this study was to quantify glucose absorption and the relationships between GE, glucose absorption and glycaemia in critically ill patients.

Methods: Studies were performed in nineteen mechanically-ventilated critically ill patients and compared to nineteen healthy subjects. Following 4 hours fasting, 100 ml of Ensure, 2 g 3-O-methyl glucose (3-OMG) and 99mTc sulphur colloid were infused into the stomach over 5 minutes. Glucose absorption (plasma 3-OMG), blood glucose levels and GE (scintigraphy) were measured over four hours. Data are mean +/- SEM. A P-value < 0.05 was considered significant.

Results: Absorption of 3-OMG was markedly reduced in patients (AUC240: 26.2 +/- 18.4 vs. 66.6 +/- 16.8; P < 0.001; peak: 0.17 +/- 0.12 vs. 0.37 +/- 0.098 mMol/l; P < 0.001; time to peak; 151 +/- 84 vs. 89 +/- 33 minutes; P = 0.007); and both the baseline (8.0 +/- 2.1 vs. 5.6 +/- 0.23 mMol/l; P < 0.001) and peak (10.0 +/- 2.2 vs. 7.7 +/- 0.2 mMol/l; P < 0.001) blood glucose levels were higher in patients; compared to healthy subjects. In patients; 3-OMG absorption was directly related to GE (AUC240; r = -0.77 to -0.87; P < 0.001; peak concentrations; r = -0.75 to -0.81; P = 0.001; time to peak; r = 0.89-0.94; P < 0.001); but when GE was normal (percent retention240 < 10%; n = 9) absorption was still impaired. GE was inversely related to baseline blood glucose, such that elevated levels were associated with slower GE (ret 60, 180 and 240 minutes: r > 0.51; P < 0.05).

Conclusions: In critically ill patients; (i) the rate and extent of glucose absorption are markedly reduced; (ii) GE is a major determinant of the rate of absorption, but does not fully account for the extent of impaired absorption; (iii) blood glucose concentration could be one of a number of factors affecting GE.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Plasma 3-OMG concentrations in ICU patients (n = 19) and healthy controls (n = 19). Area under the concentration curve at 240 minutes (AUC240): P < 0.001; Peak [3-OMG]: P < 0.001; Time to peak: P = 0.007. ICU = intensive care unit.
Figure 2
Figure 2
Blood glucose concentrations over time in ICU patients not receiving insulin (n = 16) and healthy subjects (n = 19). Peak blood glucose level was higher in the ICU patients (P < 0.001) with a delayed peak (P < 0.001). ICU = intensive care unit.
Figure 3
Figure 3
Gastric emptying (percent retention at 240 minutes) in ICU patients (n = 18) and healthy controls (n = 19). P < 0.05. ICU = intensive care unit.
Figure 4
Figure 4
Plasma 3-OMG concentrations in ICU patients with normal GE (percent retention at 240 minutes <10%; n = 9) and healthy controls (n = 19). Area under the concentration curve at 240 minutes (AUC240): P < 0.001; Peak [3-OMG]: P = 0.006; Time to peak: P > 0.05. ICU = intensive care unit.

Comment in

References

    1. Tarling MM, Toner CC, Withington PS, Baxter MK, Whelpton R, Goldhill DR. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23:256–260. doi: 10.1007/s001340050325. - DOI - PubMed
    1. Heyland DK, Tougas G, King D, Cook DJ. Impaired gastric emptying in mechanically ventilated, critically ill patients. Intensive Care Med. 1996;22:1339–1344. doi: 10.1007/BF01709548. - DOI - PubMed
    1. Gonlachanvit S, Hsu CW, Boden GH, Knight LC, Maurer AH, Fisher RS, Parkman HP. Effect of altering gastric emptying on postprandial plasma glucose concentrations following a physiologic meal in type-II diabetic patients. Dig Dis Sci. 2003;48:488–497. doi: 10.1023/A:1022528414264. - DOI - PubMed
    1. Rayner CK, Samsom M, Jones KL, Horowitz M. Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 2001;24:371–381. doi: 10.2337/diacare.24.2.371. - DOI - PubMed
    1. Fraser RJ, Horowitz M, Maddox AF, Harding PE, Chatterton BE, Dent J. Hyperglycaemia slows gastric emptying in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:675–680. doi: 10.1007/BF00400569. - DOI - PubMed

Publication types