The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery
- PMID: 19714577
- PMCID: PMC7168442
- DOI: 10.1002/med.20176
The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery
Abstract
As the major etiological agent of the common cold, human rhinoviruses (HRV) cause millions of lost working and school days annually. Moreover, clinical studies proved an association between harmless upper respiratory tract infections and more severe diseases e.g. sinusitis, asthma, and chronic obstructive pulmonary disease. Both the medicinal and socio-economic impact of HRV infections and the lack of antiviral drugs substantiate the need for intensive antiviral research. A common structural feature of the approximately 100 HRV serotypes is the icosahedrally shaped capsid formed by 60 identical copies of viral capsid proteins VP1-4. The capsid protects the single-stranded, positive sense RNA genome of about 7,400 bases in length. Both structural as well as nonstructural proteins produced during the viral life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, interferon and phytoceuticals were shown to protect host cells. Most of the known inhibitors of HRV replication were discovered as a result of empirical or semi-empirical screening in cell culture. Structure-activity relationship studies are used for hit optimization and lead structure discovery. The increasing structural insight and molecular understanding of viral proteins on the one hand and the advent of innovative computer-assisted technologies on the other hand have facilitated a rationalized access for the discovery of small chemical entities with antirhinoviral (anti-HRV) activity. This review will (i) summarize existing structural knowledge about HRV, (ii) focus on mechanisms of anti-HRV agents from synthetic and natural origin, and (iii) demonstrate strategies for efficient lead structure discovery.
© 2009 Wiley Periodicals, Inc.
Figures
References
-
- Le Gall O, Christian P, Fauquet CM, King AM, Knowles NJ, Nakashima N, Stanway G, Gorbalenya AE. Picornavirales, a proposed order of positive‐sense single‐stranded RNA viruses with a pseudo‐T=3 virion architecture. Arch Virol 2008;153:715–727. - PubMed
-
- Briese T, Renwick N, Venter M, Jarman RG, Ghosh D, Kondgen S, Shrestha SK, Hoegh AM, Casas I, Adjogoua EV, Akoua‐Koffi C, Myint KS, Williams DT, Chidlow G, van den Berg R, Calvo C, Koch O, Palacios G, Kapoor V, Villari J, Dominguez SR, Holmes KV, Harnett G, Smith D, Mackenzie JS, Ellerbrok H, Schweiger B, Schonning K, Chadha MS, Leendertz FH, Mishra AC, Gibbons RV, Holmes EC, Lipkin WI. Global distribution of novel rhinovirus genotype. Emerg Infect Dis 2008;14:944–947. - PMC - PubMed
-
- Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY. Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV‐C, associated with acute respiratory illness in children. J Clin Microbiol 2007;45:3655–3664. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
