Epigenetic dysregulation in cancer
- PMID: 19717641
- PMCID: PMC2751531
- DOI: 10.2353/ajpath.2009.081142
Epigenetic dysregulation in cancer
Abstract
One of the great paradoxes in cellular differentiation is how cells with identical DNA sequences differentiate into so many different cell types. The mechanisms underlying this process involve epigenetic regulation mediated by alterations in DNA methylation, histone posttranslational modifications, and nucleosome remodeling. It is becoming increasingly clear that disruption of the "epigenome" as a result of alterations in epigenetic regulators is a fundamental mechanism in cancer. This has major implications for the future of both molecular diagnostics as well as cancer chemotherapy.
Figures
References
-
- Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–710. - PubMed
-
- Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159. - PubMed
-
- Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 2006;442:86–90. - PubMed
-
- Feinberg A, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–153. - PubMed
-
- Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–1385. - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
