Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;5(10):721-3.
doi: 10.1038/nchembio.212. Epub 2009 Aug 30.

Extracellular redox modulation by regulatory T cells

Affiliations

Extracellular redox modulation by regulatory T cells

Zhonghua Yan et al. Nat Chem Biol. 2009 Oct.

Abstract

We demonstrate that the mechanism of redox remodeling during mouse T-cell activation involves secretion of glutathione by dendritic cells and its subsequent cleavage to cysteine. Extracellular cysteine accumulation results in a lower redox potential, which is conducive to proliferation, and changes the net redox status of exofacial protein domains. Regulatory T cells inhibit this redox metabolite signaling pathway, which represents a previously unrecognized mechanism for immunosuppression of effector T cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Mechanism of Cysex accumulation
(a) DCs were co-cultured with Tn cells at a 1:1, 1:2 or 1:4 ratio for different durations, and the [Cys]ex was measured. (b) Changes in the extracellular Cys/cystine redox potential at 36 h. The extracellular Cys/cystine redox potential was calculated according to the Nernst equation: Eh = Eo + RT/2ℱ ln ([cystine]/[Cys]2), using Eo=−250 mV (pH=7.4). (c) Effect of NF-κB pathway inhibitors on [Cys]ex. (d) Cys metabolism during DC-T cell interaction and the effects of inhibitors. Propargylglycine (PPG), butathionine sulfoximine (BSO), sulfasalzine (SAS), L-aspartic acid β-hydroxamate (AβH), acivicin (ACV) and MK-571 inhibit γ-cystathionase, γ-glutamylcysteinyl synthetase, the xC and the XAG transporter, γ-glutamyltranspeptidase, and the multidrug resistance protein 1 (MRP1) respectively. (e) Inhibition of [Cys]ex by various inhibitors. DCs were co-cultured for 36 h with Tn cells (1:4) ± 400 μM AβH, or ± 500 μM SAS, or ± 250 μM ACV or ± SAS+ACV. [Cys]ex is expressed as a percent of the concentration in untreated DC-T cell co-culture medium. The data represent the mean ± SD of at least 4 experiments with different batches of cells. (f) xCT expression in DCs cultured ± Tn cells for 36 h. xCT migrates as 35 and 55 kDa bands. (g) [GSH]in in Teffs cells co-cultured with DCs (1:4) for 16 h ± SAS or ACV. Representative data from one of three independent experiments are shown for a, b, c, f, g. (*, p<0.05; **, p<0.005; ***, p<0.0005; two tailed Student’s t-test).
Figure 2
Figure 2. Treg-mediated extracellular redox remodeling
(a) [Cys]ex during co-culture of DCs with Tn cells (1:4) or with Tn+Treg cells (1:4:1 or 1:4:2). (b) [Cys]ex in DC+LPS±Treg (1:2). (c) Treg-mediated suppression of [GSH]in in Teffs measured by labeling with chloromethylfluorescein diacetate (CMFDA) and (d) quantitative analysis. Student’s t-test revealed a significant reduction in DC+T cell- and DC+LPS-induced [Cys]ex (panels a, b, n=4) and GSHin labeling in T cells (panel d, n=2) in the presence of Treg cells. (e) Teff proliferation ± Tregs and with the addition of Cys to the medium as measured by the [3H]-thymidine incorporation assay. Student’s t-test revealed significant inhibition of proliferation of Teffs by Tregs, which was abrogated by addition of exogenous Cys (n=3). (f) Cell surface thiol levels on DCs and T cells as a function of co-culture using Alexa-maleimide 488 (ALM-488) staining followed by FACS analysis. (g) Quantification of the mean fluorescence intensity (MFI) data shown in panel f (n=4). (h) Confocal microscopy using Alexa-maleimide 594 staining shows an increase in cell surface thiol levels on DCs and T cells as a function of co-culture as compared to single culture. (i) Tregs suppress surface thiol levels on DCs, T cells and LPS-activated DCs. (j) Quantitative analysis of FACS data shown in panel i (n =3). Data represent the mean ± SD of independent experiments (n as indicated in each section). (*, p<0.05; **, p<0.005; two tailed Student’s t-test).

Comment in

References

    1. Angelini G, et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A. 2002;99:1491–6. - PMC - PubMed
    1. Suthanthiran M, Anderson ME, Sharma VK, Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A. 1990;87:3343–7. - PMC - PubMed
    1. Ishii T, Sugita Y, Bannai S. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol. 1987;133:330–6. - PubMed
    1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87. - PubMed
    1. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32. - PMC - PubMed

Publication types

MeSH terms