Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun;57(6):1123-39.
doi: 10.1080/09553009014551241.

The kinetics of radiation-induced strand breakage in polynucleotides in the presence of oxygen: a time-resolved light-scattering study

Affiliations

The kinetics of radiation-induced strand breakage in polynucleotides in the presence of oxygen: a time-resolved light-scattering study

G D Jones et al. Int J Radiat Biol. 1990 Jun.

Abstract

The time-resolved light-scattering changes of aqueous, aerated solutions of poly-C, poly-U and poly-A at pH 7.8, following pulse irradiation, have been studied as indices of strand break formation. With doses of 4-24 Gy/pulse a number of kinetically distinct components have been detected. For the poly-pyrimidines an immediate and fast reduction (tau 1/2 less than or equal to 50 microseconds) in light-scattering intensity (LSI), accounting for approximately 20% of the total LSI change, is followed by a much slower loss (k1 approximately 1.6 s-1) which constitutes their major LSI change. For poly-A a similar fast component is observed, present to an extent equivalent to the one noted with poly-C; it constitutes, however, over 50% of the purine polynucleotide's total response, with the remainder of the change being a slower loss (tau 1/2 approximately 0.09 s). Optical pulse radiolysis studies of poly-C and poly-U, in support of the LSI investigations, show that transient absorbances in a region assigned to base peroxyl radicals decay in a complex fashion, with some at a rate equivalent to that for the slow (major) component of LSI loss. These observations support a proposal that the rate-limiting step of major strand breakage for these polynucleotides, in the presence of oxygen, is a base peroxyl radical-mediated abstraction of a H-atom from an adjacent sugar moiety (Bothe et al. 1986), with the resulting sugar peroxyl radicals then leading to strand break formation at a rate equivalent to that for loss of the initial, fast LSI components. These latter processes are attributed to strand breaks arising from the direct interaction of .OH with the polynucleotide sugar phosphate backbone.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources