The evolution of early vertebrate photoreceptors
- PMID: 19720654
- PMCID: PMC2781863
- DOI: 10.1098/rstb.2009.0099
The evolution of early vertebrate photoreceptors
Abstract
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.
Figures





Similar articles
-
Evolution of vertebrate retinal photoreception.Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2911-24. doi: 10.1098/rstb.2009.0102. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 19720653 Free PMC article. Review.
-
Evolution and ecology of retinal photoreception in early vertebrates.Brain Behav Evol. 2010;75(3):174-85. doi: 10.1159/000314904. Epub 2010 Aug 20. Brain Behav Evol. 2010. PMID: 20733293 Review.
-
Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.Integr Zool. 2009 Mar;4(1):87-98. doi: 10.1111/j.1749-4877.2008.00138.x. Integr Zool. 2009. PMID: 21392279 Review.
-
28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes.Mol Biol Evol. 1998 Dec;15(12):1706-18. doi: 10.1093/oxfordjournals.molbev.a025897. Mol Biol Evol. 1998. PMID: 9866205
-
Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes.Mol Biol Evol. 2003 Feb;20(2):287-92. doi: 10.1093/molbev/msg040. Mol Biol Evol. 2003. PMID: 12598696
Cited by
-
The evolution of phototransduction and eyes.Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2791-3. doi: 10.1098/rstb.2009.0106. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 19720644 Free PMC article. No abstract available.
-
Evolution of vertebrate retinal photoreception.Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2911-24. doi: 10.1098/rstb.2009.0102. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 19720653 Free PMC article. Review.
-
Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates.Front Cell Dev Biol. 2024 Mar 12;12:1340157. doi: 10.3389/fcell.2024.1340157. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 38533086 Free PMC article. Review.
-
Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.PLoS One. 2012;7(11):e49975. doi: 10.1371/journal.pone.0049975. Epub 2012 Nov 27. PLoS One. 2012. PMID: 23209628 Free PMC article.
-
The Birth of the Mammalian Sleep.Biology (Basel). 2022 May 11;11(5):734. doi: 10.3390/biology11050734. Biology (Basel). 2022. PMID: 35625462 Free PMC article. Review.
References
-
- Arrese C. A., Hart N. S., Thomas N., Beazley L. D., Shand J.2002Trichromacy in Australian marsupials. Curr. Biol. 12, 657–660 (doi:10.1016/S0960-9822(02)00772-8) - DOI - PubMed
-
- Avery J. A., Bowmaker J. K.1982Visual pigments in the four-eyed fish. Anableps anableps. Nature 298, 62–64 (doi:10.1038/298062a0) - DOI
-
- Bailes H. J., Robinson S. R., Trezise A. E. O., Collin S. P.2006Morphology, characterisation and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). J. Comp. Neurol. 494, 381–397 (doi:10.1002/cne.20809) - DOI - PubMed
-
- Bailes H. J., Davies W. L., Trezise A. E. O., Collin S. P.2007Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evol. Biol. 7, 200 (doi:10.1186/1471–2148–7-200) - DOI - PMC - PubMed
-
- Barbour H. R., Archer M. A., Hart N. S., Thomas N., Dunlop S. A., Beazley L. D., Shand J.2002Retinal characteristics of the ornate dragon lizard, Ctenophorous ornatus. J. Comp. Neurol. 450, 334–344 (doi:10.1002/cne.10308) - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources