A possible role of class 1 plant hemoglobin at the early stage of legume-rhizobium symbiosis
- PMID: 19721749
- PMCID: PMC2652528
- DOI: 10.4161/psb.4.3.7796
A possible role of class 1 plant hemoglobin at the early stage of legume-rhizobium symbiosis
Abstract
Leguminous plants form root nodules, in which symbiotic rhizobia fix atmospheric nitrogen and supply the fixation products to their host plants as a nitrogen source. On the process of establishing the symbiosis, rhizobia induce genes involved in the defense system of their host plants. However, the host defense responses will be cancelled by unknown mechanism. We focused on nitric oxide (NO) as a key molecule of plant defense system and class 1 plant hemoglobin (Hb) as a scavenger of NO. The inoculation of a symbiotic rhizobium, Mesorhizobium loti MAFF303099, induced transiently NO production and expression of a class 1 Hb gene LjHb1 in the roots of a model legume Lotus japonicus. In this addendum, we show that the lipopolysaccharide of M. loti induces NO production and expression of LjHb1 in L. japonicus, and we propose the role of NO and Hb at the early stage of symbiosis.
Keywords: Lotus japonicus; Mesorhizobium loti; defense; hemoglobin; lipopolysaccharide; nitric oxide; rhizobium; symbiosis.
Figures

Comment on
-
Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus.Mol Plant Microbe Interact. 2008 Sep;21(9):1175-83. doi: 10.1094/MPMI-21-9-1175. Mol Plant Microbe Interact. 2008. PMID: 18700822
Similar articles
-
Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus.Microbes Environ. 2021;36(3):ME21038. doi: 10.1264/jsme2.ME21038. Microbes Environ. 2021. PMID: 34470944 Free PMC article.
-
Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.Plant J. 2018 Jan;93(1):5-16. doi: 10.1111/tpj.13759. Epub 2017 Dec 2. Plant J. 2018. PMID: 29086445
-
Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti.Plant Cell Physiol. 2011 Apr;52(4):610-7. doi: 10.1093/pcp/pcr020. Epub 2011 Feb 16. Plant Cell Physiol. 2011. PMID: 21330297
-
Hemoglobins in the legume-Rhizobium symbiosis.New Phytol. 2020 Oct;228(2):472-484. doi: 10.1111/nph.16673. Epub 2020 Jul 4. New Phytol. 2020. PMID: 32442331 Review.
-
The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis.J Exp Bot. 2020 Mar 12;71(5):1668-1680. doi: 10.1093/jxb/eraa018. J Exp Bot. 2020. PMID: 32163588 Review.
Cited by
-
The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots.Mycorrhiza. 2012 May;22(4):259-69. doi: 10.1007/s00572-011-0400-4. Epub 2011 Jul 9. Mycorrhiza. 2012. PMID: 21744141
-
Characterization of nitric oxide-inducing lipid A derived from Mesorhizobium loti lipopolysaccharide.Microbes Environ. 2012;27(4):490-6. doi: 10.1264/jsme2.me12103. Epub 2012 Oct 10. Microbes Environ. 2012. PMID: 23059724 Free PMC article.
-
Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction.Front Plant Sci. 2016 Apr 8;7:454. doi: 10.3389/fpls.2016.00454. eCollection 2016. Front Plant Sci. 2016. PMID: 27092165 Free PMC article. Review.
-
Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration.New Phytol. 2020 Jul;227(1):84-98. doi: 10.1111/nph.16462. Epub 2020 Mar 14. New Phytol. 2020. PMID: 32003030 Free PMC article.
-
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads.Cells. 2021 Apr 29;10(5):1050. doi: 10.3390/cells10051050. Cells. 2021. PMID: 33946779 Free PMC article. Review.
References
-
- Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990;344:781–784. - PubMed
-
- Baron C, Zambryski PC. The plant response in pathogenesis, symbiosis and wounding: Variations on a common theme? Annu Rev Genetics. 1995;29:107–129. - PubMed
-
- Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007;50:500–513. - PubMed
Publication types
LinkOut - more resources
Full Text Sources