Real-time activity classification using ambient and wearable sensors
- PMID: 19726267
- DOI: 10.1109/TITB.2009.2028575
Real-time activity classification using ambient and wearable sensors
Abstract
New approaches to chronic disease management within a home or community setting offer patients the prospect of more individually focused care and improved quality of life. This paper investigates the use of a light-weight ear worn activity recognition device combined with wireless ambient sensors for identifying common activities of daily living. A two-stage Bayesian classifier that uses information from both types of sensors is presented. Detailed experimental validation is provided for datasets collected in a laboratory setting as well as in a home environment. Issues concerning the effective use of the relatively limited discriminative power of the ambient sensors are discussed. The proposed framework bodes well for a multi-dwelling environment, and offers a pervasive sensing environment for both patients and care-takers.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
