Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;130(4):1167-77.
doi: 10.1038/jid.2009.284. Epub 2009 Sep 3.

Injury is a major inducer of epidermal innate immune responses during wound healing

Affiliations

Injury is a major inducer of epidermal innate immune responses during wound healing

K Markus Roupé et al. J Invest Dermatol. 2010 Apr.

Erratum in

  • J Invest Dermatol. 2010 Mar;130(3):910

Abstract

We examined the importance of injury for the epidermal innate immune response in human skin wounds. We found that injury, independent of infiltrating inflammatory cells, generated prominent chemotactic activity toward neutrophils in injured skin because of IL-8 production. Furthermore, injury was a major inducer of the expression of antimicrobial (poly)peptides (AMPs) in skin wounds. In human skin, these injury-induced innate immune responses were mediated by activation of the epidermal growth factor receptor (EGFR). Consequently, inhibition of the EGFR blocked both the chemotactic activity generated in injured skin and the expression of the majority of the AMPs. The importance of injury was confirmed in mouse experiments in vivo, in which injury independent of infection was a potent inducer of AMPs in skin wounds. To our knowledge, these data thereby provide a previously unreported molecular link between injury and neutrophil accumulation and identify the molecular background for the vast expression of IL-8 and AMPs in wounded epidermis. Conceptually, these data show that the growth factor response elicited by injury is important for the recruitment of neutrophils in skin wounds.

PubMed Disclaimer

Comment in

Publication types

MeSH terms