Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May-Jun;23(3):329-34.
doi: 10.1002/jmr.986.

Binding of phosphorylated peptides and inhibition of their interaction with disease-relevant human proteins by synthetic metal-chelate receptors

Affiliations

Binding of phosphorylated peptides and inhibition of their interaction with disease-relevant human proteins by synthetic metal-chelate receptors

Alexander Riechers et al. J Mol Recognit. 2010 May-Jun.

Abstract

The modulation of biological signal transduction pathways by masking phosphorylated amino acid residues represents a viable route toward pharmacologic protein regulation. Binding of phosphorylated amino acid residues has been achieved with synthetic metal-chelate receptors. The affinity and selectivity of such receptors can be enhanced if combined with a second binding site. We demonstrate this principle with a series of synthetic ditopic metal-chelate receptors, which were synthesized and investigated for their binding affinity to phosphorylated short peptides under conditions of physiological pH. The compounds showing highest affinity were subsequently used to inhibit the interaction of the human STAT1 protein to a peptide derived from the interferon-gamma receptor, and between the checkpoint kinase Chk2 and its preferred binding motif. Two of the investigated ditopic synthetic receptors show a significant increase in inhibition activity. The results show that regulation of protein function by binding to phosphorylated amino acids is possible. The introduction of additional binding sites into the synthetic receptors increases their affinity, but the flexibility of the structures investigated so far prohibited stringent amino acid sequence selectivity in peptide binding.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources