Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:69:99-132.
doi: 10.1016/S0065-2164(09)69004-3.

Chapter 4: In vitro biofilm models: an overview

Affiliations
Review

Chapter 4: In vitro biofilm models: an overview

Andrew J McBain. Adv Appl Microbiol. 2009.

Abstract

Observing naturally occurring biofilms in situ or ex situ has revealed the wide distribution of sessile microbial communities. The ubiquity, variety and complexity of biofilms is now widely accepted by microbiologists. While they are associated with many beneficial functions such as nutrient cycling, bioremediation and colonization resistance, adverse effects including recalcitrance, their involvement in industrial fouling, contamination and infection have made biofilms a priority research topic. We know that most biofilms, other than within certain infections and laboratory flasks, are composed of multiple species and that there is arguably no unifying biofilm architecture. Biofilms do however share certain properties including the presence of gradients of nutrients, gasses and metabolic products, relatively increased cell density, deposition of extracellular polymeric substances and marked recalcitrance towards antimicrobial treatments. Much of our understanding of biofilm physiology and micro-ecology originates from experiments using in vitro biofilm models. Broadly speaking, such models may be used to replicate environmental conditions within the laboratory or to focus on selected variables such a growth rate or fluid flow, etc. This chapter provides an overview of some commonly used biofilm models including microtitre plate systems, flow cells, the constant depth film fermenter, annular reactors and the perfused biofilm fermenter. While perfused biofilm fermenters, in particular, enable growth rate to be controlled within thin, relatively homogenous, quasi steady-state biofilms through modulation of flow rate nutrient availability, other models provide representative modelling of in situ conditions where steady states may be uncommon.

PubMed Disclaimer

MeSH terms

LinkOut - more resources